Coordinatore | ECOLE NORMALE SUPERIEURE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | France [FR] |
Totale costo | 3˙199˙078 € |
EC contributo | 3˙199˙078 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2011-ADG_20110406 |
Funding Scheme | ERC-AG |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-10-01 - 2017-09-30 |
# | ||||
---|---|---|---|---|
1 |
ECOLE NORMALE SUPERIEURE
Organization address
address: "45, RUE D'ULM" contact info |
FR (PARIS CEDEX 05) | hostInstitution | 3˙199˙078.00 |
2 |
ECOLE NORMALE SUPERIEURE
Organization address
address: "45, RUE D'ULM" contact info |
FR (PARIS CEDEX 05) | hostInstitution | 3˙199˙078.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Listening in realistic situations is an active process that engages perceptual and cognitive faculties, endowing speech with meaning, music with joy, and environmental sounds with emotion. Through hearing, humans and other animals navigate complex acoustic scenes, separate sound mixtures, and assess their behavioral relevance. These remarkable feats are currently beyond our understanding and exceed the capabilities of the most sophisticated audio engineering systems. The goal of the proposed research is to investigate experimentally a novel view of hearing, where active hearing emerges from a deep interplay between adaptive sensory processes and goal-directed cognition. Specifically, we shall explore the postulate that versatile perception is mediated by rapid-plasticity at the neuronal level. At the conjunction of sensory and cognitive processing, rapid-plasticity pervades all levels of auditory system, from the cochlea up to the auditory and prefrontal cortices. Exploiting fundamental statistical regularities of acoustics, it is what allows humans and other animal to deal so successfully with natural acoustic scenes where artificial systems fail. The project builds on the internationally recognized leadership of the PI in the fields of physiology and computational modeling, combined with the expertise of the Co-Investigator in psychophysics. Building on these highly complementary fields and several technical innovations, we hope to promote a novel view of auditory perception and cognition. We aim also to contribute significantly to translational research in the domain of signal processing for clinical hearing aids, given that many current limitations are not technological but rather conceptual. The project will finally result in the creation of laboratory facilities and an intellectual network unique in France and rare in all of Europe, combining cognitive, neural, and computational approaches to auditory neuroscience.'