PHOTONAVINET

Photoreception in Drosophila larvae: Information coding in a simple neuronal circuit

 Coordinatore UNIVERSITE DE FRIBOURG 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙491˙873 €
 EC contributo 1˙491˙873 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111109
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-01-01   -   2017-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE DE FRIBOURG

 Organization address address: AVENUE DE L'EUROPE 20
city: FRIBOURG
postcode: 1700

contact info
Titolo: Mrs.
Nome: Monique
Cognome: Bersier
Email: send email
Telefono: +41 26 300 7003
Fax: +41 26 300 9600

CH (FRIBOURG) hostInstitution 1˙491˙873.00
2    UNIVERSITE DE FRIBOURG

 Organization address address: AVENUE DE L'EUROPE 20
city: FRIBOURG
postcode: 1700

contact info
Titolo: Prof.
Nome: Simon
Cognome: Sprecher
Email: send email
Telefono: +41 26 300 8901
Fax: +41 26 300 9741

CH (FRIBOURG) hostInstitution 1˙491˙873.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

lon    larva    model    expressing    dissect    rh    genetically    neurons    cells    sensitive    neuronal    simpler    et    al    brain    drosophila    fly    simple    visual   

 Obiettivo del progetto (Objective)

'How does the neuronal network of the brain mediate its function? This fundamental question in biology is still a puzzle, despite decades of intensive work. A seemingly unsolvable obstacle when studying the brain is its enormous complexity. A powerful approach to understand our brain uses “simple” brains of animal models, in which one can genetically identify and manipulate neurons. The brain of the fruit fly Drosophila melanogaster is widely used as an impacting model system to study how the brain functions with the advantage that the fly brain is much simpler compared to the mammalian brain. Even another one order of magnitude simpler is the brain of the Drosophila larva consisting of an estimated 10’000 neurons. We use the Drosophila larva as an excellent model to genetically dissect a comparably simple visual system. The eye of the larva consists only of two types of photoreceptor neurons: four blue-sensitive cells expressing Rhodopsin5 (Rh5) and eight green-sensitive cells expressing Rhodpsin6 (Rh6). The photoreceptors transmit the information to a small set of target neurons in the larval optic neuropil (LON). We found that only 12-15 brain interneurons connect to the LON, which can be classified in four different groups, according to location and neurotransmitter they use. The goal of this project is to dissect neuronal circuits of visual information processing: from mapping synaptic connections in the circuit to the behavioural impact of neurons. Preliminary results of my laboratory and a “step-by-step strategy” support the feasibility to reach these ambitious goals (Sprecher et al., 2011; Von Essen et al., 2011, Keene et al., 2011).'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

LAB-SMART (2012)

"Lewis Acidic Borocations: improving Suzuki couplings, Material synthesis, Alkylation and Radical Transformations"

Read More  

MUMID (2010)

"Multimodal tools for Molecular Imaging, Diagnostics and Therapeutics"

Read More  

CONSTANS (2014)

Control of the Structure of Light at the Nanoscale

Read More