BIOTORQUE

Probing the angular dynamics of biological systems with the optical torque wrench

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111012
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-01-01   -   2017-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Francesco
Cognome: Pedaci
Email: send email
Telefono: +33 4 67 41 79 12
Fax: +33 4 67 41 79 13

FR (PARIS) hostInstitution 1˙500˙000.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Mr.
Nome: Jocelyn
Cognome: Mere
Email: send email
Telefono: +33 4 67 61 35 35
Fax: +33 4 67 04 32 36

FR (PARIS) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

vivo    cellular    techniques    molecule    scanning    single    nano    line    force    dynamical    molecular    angular    motor    biological    physical    torque    optical   

 Obiettivo del progetto (Objective)

'The ability to apply forces to single molecules and bio-polymers has fundamentally changed the way we can interact with and understand biological systems. Yet, for many cellular mechanisms, it is rather the torque that is the relevant physical parameter. Excitingly, novel single-molecule techniques that utilize this parameter are now poised to contribute to novel discoveries. Here, I will study the angular dynamical behavior and response to external torque of biological systems at the molecular and cellular levels using the new optical torque wrench that I recently developed.

In a first research line, I will unravel the angular dynamics of the e.coli flagellar motor, a complex and powerful rotary nano-motor that rotates the flagellum in order to propel the bacterium forwards. I will quantitatively study different aspects of torque generation of the motor, aiming to connect evolutionary, dynamical, and structural principles. In a second research line, I will develop an in-vivo manipulation technique based on the transfer of optical torque and force onto novel nano-fabricated particles. This new scanning method will allow me to map physical properties such as the local viscosity inside living cells and the spatial organization and topography of internal membranes, thereby expanding the capabilities of existing techniques towards in-vivo and ultra-low force scanning imaging.

This project is founded on a multidisciplinary approach in which fundamental optics, novel nanoparticle fabrication, and molecular and cellular biology are integrated. It has the potential to answer biophysical questions that have challenged the field for over two decades and to impact fields ranging from single-molecule biophysics to scanning-probe microscopy and nanorheology, provided ERC funding is granted.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

AMYLOID (2013)

Identification and modulation of pathogenic Amyloid beta-peptide species

Read More  

BIOSENSORIMAGING (2009)

Hyperpolarized Biosensors in Molecular Imaging

Read More  

BIOSTRUCT (2008)

Multiscale mathematical modelling of dynamics of structure formation in cell systems

Read More