Coordinatore | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
Nazionalità Coordinatore | France [FR] |
Totale costo | 75˙000 € |
EC contributo | 75˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2012-CIG |
Funding Scheme | MC-CIG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-11-01 - 2016-10-31 |
# | ||||
---|---|---|---|---|
1 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | coordinator | 75˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The neocortex underlies higher cognitive functions in mammals and humans. Its computational function is essential for categorizing external objects into supramodal percepts. This natural categorization depends on multisensory integration to become largely independent of the modality through which relevant input is acquired. In contrast, this remarkable cognitive ability is poorly emulated by artificial systems. The anatomical cortical architecture shows extensive connectivity across its different sensory areas, departing from the classically assumed hierarchical processing scheme. Recent studies demonstrated that primary sensory cortical areas coding for distinct modalities are already interconnected, but the computational role of these heteromodal connections is unknown. My goal is to test whether heteromodal interactions in primary sensory cortical areas transmit inferences about the identity of behaviorally relevant objects perceived across multiple sensory channels. The working hypothesis is that these interactions modify the primary representation of unimodal sensory stimuli, resulting in supramodal perceptual invariance, even in ambiguous unimodal contexts. This study will be carried out in awake behaving rodents trained to discriminate between two multimodal objects, which require the two sensory modalities to be fully distinguished. State-of-the art techniques (two-photon calcium imaging and multisite electrode arrays) to record from large scale neural assemblies, will be combined with modern analysis of neural population dynamics and network simulations. Underlying mechanisms will be explored by optogenetic targeting of specific neuronal populations. My long-term aim is to quantitatively explain encoding and classification of multisensory cues across primary sensory cortical areas. I hope to derive novel generic computational principles by which brain circuits build invariant representations of the environment from ever-changing multisensory input streams.'
Identification of a general biosynthetic pathway of 3-acyltetronates and further investigation of the biosynthetic pathway of the ionophoric polyethers tetronasin and tetronomycin
Read MoreCharacterisation of the basic elements of BEC dynamics beyond mean-field
Read More