ALLEGRO

Active large-scale learning for visual recognition

 Coordinatore INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 2˙493˙322 €
 EC contributo 2˙493˙322 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-04-01   -   2018-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 Organization address address: Domaine de Voluceau, Rocquencourt
city: LE CHESNAY Cedex
postcode: 78153

contact info
Titolo: Dr.
Nome: Cordelia
Cognome: Schmid
Email: send email
Telefono: +334 7661 5230
Fax: +334 7661 5454

FR (LE CHESNAY Cedex) hostInstitution 2˙493˙322.00
2    INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

 Organization address address: Domaine de Voluceau, Rocquencourt
city: LE CHESNAY Cedex
postcode: 78153

contact info
Titolo: Ms.
Nome: Christine
Cognome: Zampaolo
Email: send email
Telefono: +334 7661 5306

FR (LE CHESNAY Cedex) hostInstitution 2˙493˙322.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

archives    video    computer    learning    collections    source    visual    data    annotation    of    models   

 Obiettivo del progetto (Objective)

'A massive and ever growing amount of digital image and video content is available today, on sites such as Flickr and YouTube, in audiovisual archives such as those of BBC and INA, and in personal collections. In most cases, it comes with additional information, such as text, audio or other metadata, that forms a rather sparse and noisy, yet rich and diverse source of annotation, ideally suited to emerging weakly supervised and active machine learning technology. The ALLEGRO project will take visual recognition to the next level by using this largely untapped source of data to automatically learn visual models. The main research objective of our project is the development of new algorithms and computer software capable of autonomously exploring evolving data collections, selecting the relevant information, and determining the visual models most appropriate for different object, scene, and activity categories. An emphasis will be put on learning visual models from video, a particularly rich source of information, and on the representation of human activities, one of today's most challenging problems in computer vision. Although this project addresses fundamental research issues, it is expected to result in significant advances in high-impact applications that range from visual mining of the Web and automated annotation and organization of family photo and video albums to large-scale information retrieval in television archives.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

THREEDSURFACE (2009)

"Three-Dimensional Surface Nano-Patterning: Concepts, Challenges and Applications"

Read More  

X-RAY-BIOIMAGING (2010)

X-ray phase-contrast imaging for biomedical applications

Read More  

EVODROP (2012)

Directed Evolution in Microdroplets

Read More