MICROBIOELECTROSYN

Microbially catalyzed electricity driven bioproduction from CO2 at the cathode in bioelectrochemical systems

 Coordinatore UNIVERSITEIT GENT 

 Organization address address: SINT PIETERSNIEUWSTRAAT 25
city: GENT
postcode: 9000

contact info
Titolo: Ms.
Nome: Saskia
Cognome: Vanden Broeck
Email: send email
Telefono: +32 9 2643124
Fax: +32 9 2643583

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 177˙000 €
 EC contributo 177˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-05-01   -   2015-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITEIT GENT

 Organization address address: SINT PIETERSNIEUWSTRAAT 25
city: GENT
postcode: 9000

contact info
Titolo: Ms.
Nome: Saskia
Cognome: Vanden Broeck
Email: send email
Telefono: +32 9 2643124
Fax: +32 9 2643583

BE (GENT) coordinator 177˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

technological    electron    microbial    bioproduction    co    electricity    chemicals    mes   

 Obiettivo del progetto (Objective)

'The breakthroughs in extracellular electron transfer abilities of several bacteria and other technological advancements during last decade facilitated the development of bioelectrochemical systems (BESs) like microbial fuel cells, which are on the threshold from a lab bench to technological realization for electricity generation. The electricity driven microbial metabolism at cathode has recently opened a new horizon in BES research as it provides very appealing and novel route for the production of valuable fuels and chemicals from CO2 and organics [referred to as microbial electrosynthesis (MES)]. At present, bioproduction via MES exists conceptually or to a limited extent in the laboratory. So far, very few microbial catalysts for these processes have been identified and the impact of electrode materials and operational parameters on microbial colonization at cathodes is not known. Furthermore, there is no developed model of such processes in an engineered environment. The proposed research in MicrobioElectrosyn will tackle these aspects on the example of acetate production by employing several microbiological, electrochemical, molecular biology, chromatography, bioengineering methods and techniques. The accomplishment of proposed objectives with a multidisciplinary approach is expected to advance the MES research with regard to aforementioned challenges for the production of fine chemicals from CO2 and electricity as well as generate scientific and commercial outcome with both environmental and economic benefits for the EU. It represents a Carbon Capture and Consumption approach and is in strong relationship with several national programs worldwide to transform CO2 into new molecules. Overall, it will enable and promote innovative and knowledge-based technologies for bioproduction. Furthermore, if linked to the wastewater treatment as an electron source, it has a potential to address the aspiration of producing high value products from waste.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SOCIAL TRANSPORT (2014)

Social Transport with Urban Big Data

Read More  

COGNOVO (2013)

Cognitive Innovation

Read More  

ATTOTREND (2010)

Femto- and attosecond imaging of molecular multiple ionization: Time-resolved electron and nuclear dynamics using free electron lasers and ultra-short pulses

Read More