BRAINVISIONREHAB

"‘Seeing’ with the ears, hands and bionic eyes: from theories about brain organization to visual rehabilitation"

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙499˙900 €
 EC contributo 1˙499˙900 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-StG_20111109
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-09-01   -   2018-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben-Yehuda
Email: send email
Telefono: +972 2 6586676
Fax: +972 7 22447007

IL (JERUSALEM) hostInstitution 1˙499˙900.00
2    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Prof.
Nome: Amir
Cognome: Amedi
Email: send email
Telefono: +972 2 6757259
Fax: +972 2 6758602

IL (JERUSALEM) hostInstitution 1˙499˙900.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

brain    training    sensory    bionic    see    rehabilitation    visual    ssds    eyes    blind    surgery    encodes   

 Obiettivo del progetto (Objective)

'My lab's work ranges from basic science, querying brain plasticity and sensory integration, to technological developments, allowing the blind to be more independent and even “see” using sounds and touch similar to bats and dolphins (a.k.a. Sensory Substitution Devices, SSDs), and back to applying these devices in research. We propose that, with proper training, any brain area or network can change the type of sensory input it uses to retrieve behaviorally task-relevant information within a matter of days. If this is true, it can have far reaching implications also for clinical rehabilitation. To achieve this, we are developing several innovative SSDs which encode the most crucial aspects of vision and increase their accessibility the blind, along with targeted, structured training protocols both in virtual environments and in real life. For instance, the “EyeMusic”, encodes colored complex images using pleasant musical scales and instruments, and the “EyeCane”, a palm-size cane, which encodes distance and depth in several directions accurately and efficiently. We provide preliminary but compelling evidence that following such training, SSDs can enable almost blind to recognize daily objects, colors, faces and facial expressions, read street signs, and aiding mobility and navigation. SSDs can also be used in conjunction with (any) invasive approach for visual rehabilitation. We are developing a novel hybrid Visual Rehabilitation Device which combines SSD and bionic eyes. In this set up, the SSDs is used in training the brain to “see” prior to surgery, in providing explanatory signal after surgery and in augmenting the capabilities of the bionic-eyes using information arriving from the same image. We will chart the dynamics of the plastic changes in the brain by performing unprecedented longitudinal Neuroimaging, Electrophysiological and Neurodisruptive approaches while individuals learn to ‘see’ using each of the visual rehabilitation approaches suggested here.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

HISTANTARTSI (2011)

"Historical memory, Antiquarian Culture and Artistic Patronage: Social Identities in the Centres of Southern Italy between the Medieval and Early Modern Period"

Read More  

ERACEP (2009)

Emerging Research Areas and their Coverage by ERC-supported Projects

Read More  

GRAPHALGAPP (2014)

Challenges in Graph Algorithms with Applications

Read More