Coordinatore | WEIZMANN INSTITUTE OF SCIENCE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Israel [IL] |
Totale costo | 1˙499˙992 € |
EC contributo | 1˙499˙992 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2013-StG |
Funding Scheme | ERC-SG |
Anno di inizio | 2013 |
Periodo (anno-mese-giorno) | 2013-10-01 - 2018-09-30 |
# | ||||
---|---|---|---|---|
1 |
WEIZMANN INSTITUTE OF SCIENCE
Organization address
address: HERZL STREET 234 contact info |
IL (REHOVOT) | hostInstitution | 1˙499˙992.00 |
2 |
WEIZMANN INSTITUTE OF SCIENCE
Organization address
address: HERZL STREET 234 contact info |
IL (REHOVOT) | hostInstitution | 1˙499˙992.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Nature has long inspired chemists with its abilities to stabilize ephemeral chemical species, to perform chemical reactions with unprecedented rates and selectivities, and to synthesize complex molecules and fascinating inorganic nanostructures. What natural systems consistently exploit - which is yet fundamentally different from how chemists perform reactions - is their aspect of nanoscale confinement. The goal of the proposed research program is to integrate the worlds of organic and inorganic colloidal chemistry by means of manipulating chemical reactivities and synthesizing novel molecules and nanostructures inside synthetic confined environments created using novel, unconventional approaches based on inorganic, nanostructured building blocks. The three types of confined spaces we propose are as follows: 1) nanopores within reversibly self-assembling colloidal crystals ('dynamic nanoflasks'), 2) cavities of bowl-shaped metallic nanoparticles (NPs), and 3) surfaces of spherical NPs. By taking advantage of these unique tools, we will attempt to develop, respectively, 1) a conceptually new method for catalyzing chemical reactions using light, 2) nanoscale inclusion chemistry (a field based on host-guest 'complexes' assembled form nanosized components) and 3) to use NPs as platforms for the development of new organic reactions. While these objectives are predominantly of a fundamental nature, they can easily evolve into a variety of practical applications. Specifically, we will pursue diverse goals such as the preparation of 1) a new family of inverse opals (with potentially fascinating optical and mechanical properties), 2) artificial chaperones (NPs assisting in protein folding), and 3) size- and shape-controlled polymeric vesicles. Overall, it is believed that this marriage of organic and colloidal chemistry has the potential to change the fundamental way we perform chemical reactions, paving the way to the discovery of new phenomena and unique structures.'