LIVHET

Single cell heterogeneity in the mammalian liver

 Coordinatore WEIZMANN INSTITUTE OF SCIENCE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-11-01   -   2018-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Dr.
Nome: Shaul Shalev
Cognome: Itzkovitz
Email: send email
Telefono: +972 8 934 4011
Fax: +972 8 947 0872

IL (REHOVOT) hostInstitution 1˙500˙000.00
2    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Ms.
Nome: Gabi
Cognome: Bernstein
Email: send email
Telefono: +972 8 934 6728
Fax: +972 8 934 4165

IL (REHOVOT) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mammalian    hepatocytes    spatial    lobule    patterns    single    liver    heterogeneity    blood    biology    intact    cells    tissue    polyploidy    zonation    cell    principles    functions   

 Obiettivo del progetto (Objective)

'The mammalian liver performs critical functions for maintaining metabolic homeostasis. It regulates the body’s glucose and lipid stores, detoxifies blood, and produces bile among a host of other functions. The liver achieves this diversity through the collective behaviour of heterogeneous hepatocytes operating in highly structured microenvironments. Understanding the design principles of the liver is an open challenge requiring analysis of single cells within the intact tissue. Liver heterogeneity appears at two length scales. At the liver lobule level centripetal blood flow creates gradients of oxygen, nutrients and hormones. The consumption of hepatocytes along the lobule axis determines the inputs available for more centrally located hepatocytes. The resulting spatial division of labor, termed ‘liver zonation’ could enable optimal tissue function in face of these long-range constraints. At the cellular level most hepatocytes are polyploid cells, having either one or two nuclei and a corresponding variability in cell sizes. The functional advantage of liver polyploidy remains unclear. In this proposal we aim to combine single molecule transcript imaging in the intact liver with theory from systems biology to uncover the design principles of liver heterogeneity. We will examine the hypothesis that spatial zonation and hepatocyte polyploidy evolved to enable the liver to optimally operate. We will characterize the spatial co-expression patterns of key liver genes and theoretically compare the ability of these patterns to excel over alternative patterns. We will also characterize the differential resource allocation of hepatocytes of different ploidy classes. This interdisciplinary project stands at the forefront of research in mammalian biology, addressing fundamental properties of a major organ at unprecedented single-cell resolution. It will open new avenues for extending the field of systems biology to the analysis of complex tissues in mammalian organisms.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MICROGLIA AND AMD (2008)

Subretinal Microglia accumulation play a decisive role in the development of Age-related Macular Degeneration

Read More  

TRANSFER-LEARNING (2014)

Transfer Learning within and between brains

Read More  

JUDGINGHISTORIES (2014)

"Experience, Judgement, and Representation of World War II in an Age of Globalization"

Read More