RIBOCANCER

Ribosome defects in cancer

 Coordinatore KATHOLIEKE UNIVERSITEIT LEUVEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 1˙497˙038 €
 EC contributo 1˙497˙038 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-StG
 Funding Scheme ERC-SG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-01-01   -   2018-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    VIB

 Organization address address: Rijvisschestraat 120
city: ZWIJNAARDE - GENT
postcode: 9052

contact info
Titolo: Mr.
Nome: Rik
Cognome: Audenaert
Email: send email
Telefono: 3292446611
Fax: 3292446610

BE (ZWIJNAARDE - GENT) beneficiary 337˙079.25
2    KATHOLIEKE UNIVERSITEIT LEUVEN

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Dr.
Nome: Kim Diana Lea
Cognome: De Keersmaecker
Email: send email
Telefono: 3216373167
Fax: 3216330827

BE (LEUVEN) hostInstitution 1˙159˙958.75
3    KATHOLIEKE UNIVERSITEIT LEUVEN

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Mr.
Nome: Stijn
Cognome: Delauré
Email: send email
Telefono: 3216320944
Fax: 3216324198

BE (LEUVEN) hostInstitution 1˙159˙958.75

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

translation    addition    cellular    explore    cell    cells    cancer    mechanism    types       vital    ribosome    want    defects    altered    mutation    proteins    rpl    mutations    ribosomal    mrnas    patients    acquired    defective    found   

 Obiettivo del progetto (Objective)

'Cancer cells are defective in vital cell functions such as cell cycle control and response to growth signals. We found that cancer cells acquire defects in yet another vital function: translation of mRNA into proteins. We saw that 9.8% of children with T-cell leukemia (T-ALL) harbor acquired mutations in the ribosome, the cellular protein translation factory. We found mutations in RPL10, RPL5 and RPL22, 3 proteins of the large 60S ribosomal subunit. Strikingly, 6.5% of T-ALL patients had the same RPL10 R98S missense mutation. Although congenital ribosome defects were previously linked to higher cancer risk, the concept that defects in the ribosome are acquired during life and are selected for in cancer is novel. In addition, it is currently not understood by what mechanism ribosome defects are carcinogenic. Patients with inherited ribosome defects are predisposed to all types of cancer. Therefore, other cancers than T-ALL may show acquired defects in the ribosome and I want to explore the prevalence of acquired ribosome defects in various cancer types. Second, I want to explore by which mechanism ribosome mutations promote cancer. Initially, I will focus on the RPL10 R98S mutation, the most frequent acquired ribosome defect we found so far. We will test the effect of RPL10 R98S on cell behavior parameters such as self-renewal capacity and resistance to apoptosis. I hypothesize that altered translation of a subset of cellular mRNAs, including mRNAs coding major tumor suppressors or oncogenes, may explain the oncogenic action of RPL10 R98S. Therefore, we will identify all mRNAs with altered translation efficiency or fidelity in RPL10 R98S cells. In addition, we will test if RPL10 R98S promotes cancer by altering extra-ribosomal roles of RPL10 or by driving inactivation of the TP53 pathway. Finally, acquired ribosome defects may represent a novel target for cancer therapy and we will test if ribosome defective cancer cells are hypersensitive to translation inhibitors.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

TOPOMAT (2012)

Topological insulators: computational exploration of emerging electronic materials

Read More  

VASNICHE (2013)

The vascular stem cell niche and the neurovascular unit

Read More  

SELFORG (2012)

Self Organization in Cytoskeletal Systems

Read More