ACROSS

3D Reconstruction and Modeling across Different Levels of Abstraction

 Coordinatore RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 2˙482˙000 €
 EC contributo 2˙482˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2019-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

 Organization address address: Templergraben 55
city: AACHEN
postcode: 52062

contact info
Titolo: Prof.
Nome: Ernst
Cognome: Schmachtenberg
Email: send email
Telefono: +49 241 8090490
Fax: +49 241 8092490

DE (AACHEN) hostInstitution 2˙482˙000.00
2    RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN

 Organization address address: Templergraben 55
city: AACHEN
postcode: 52062

contact info
Titolo: Prof.
Nome: Leif
Cognome: Kobbelt
Email: send email
Telefono: +49 241 8021801
Fax: +49 241 8022899

DE (AACHEN) hostInstitution 2˙482˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

abstraction    models    data    shape    algorithms    reconstruction    geometric    raw    meta    levels    simulation    real    objects   

 Obiettivo del progetto (Objective)

'Digital 3D models are gaining more and more importance in diverse application fields ranging from computer graphics, multimedia and simulation sciences to engineering, architecture, and medicine. Powerful technologies to digitize the 3D shape of real objects and scenes are becoming available even to consumers. However, the raw geometric data emerging from, e.g., 3D scanning or multi-view stereo often lacks a consistent structure and meta-information which are necessary for the effective deployment of such models in sophisticated down-stream applications like animation, simulation, or CAD/CAM that go beyond mere visualization. Our goal is to develop new fundamental algorithms which transform raw geometric input data into augmented 3D models that are equipped with structural meta information such as feature aligned meshes, patch segmentations, local and global geometric constraints, statistical shape variation data, or even procedural descriptions. Our methodological approach is inspired by the human perceptual system that integrates bottom-up (data-driven) and top-down (model-driven) mechanisms in its hierarchical processing. Similarly we combine algorithms operating on different levels of abstraction into reconstruction and modeling networks. Instead of developing an individual solution for each specific application scenario, we create an eco-system of algorithms for automatic processing and interactive design of highly complex 3D models. A key concept is the information flow across all levels of abstraction in a bottom-up as well as top-down fashion. We not only aim at optimizing geometric representations but in fact at bridging the gap between reconstruction and recognition of geometric objects. The results from this project will make it possible to bring 3D models of real world objects into many highly relevant applications in science, industry, and entertainment, greatly reducing the excessive manual effort that is still necessary today.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DEVOCHROMO (2014)

Chromosome structure and genome organization in early mammalian development

Read More  

REGULATORY GENOMICS (2010)

Regulatory Genomics in Drosophila

Read More  

SYSTEMSDENDRITIC (2012)

Harnessing systems immunology to unravel dendritic cell subset biology

Read More