SMTAT

Single-molecule imaging of twin-arginine transporter assembly

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 221˙606 €
 EC contributo 221˙606 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-07-15   -   2016-07-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD

 Organization address address: University Offices, Wellington Square
city: OXFORD
postcode: OX1 2JD

contact info
Titolo: Ms.
Nome: Gill
Cognome: Wells
Email: send email
Telefono: +44 1865 289800
Fax: +44 1865 289801

UK (OXFORD) coordinator 221˙606.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

assembled    imaging    transport    multiple    pathway    tat    membrane    simple    lipid    function    bilayers    interface    single    proteins    molecule    channel    droplet   

 Obiettivo del progetto (Objective)

'The export of proteins across the cytoplasmic membrane is an essential function for all cells. In bacteria, two distinct transport mechanisms are used: The well-studied Sec pathway transports unfolded proteins via extrusion through a membrane-bound channel. In contrast, much less is known regarding the Twin Arginine Translocation (Tat) pathway responsible for the transport of folded proteins. The complexity required for this function is beyond that of a simple conformational change, and requires the orchestration of multiple copies of multiple proteins assembled into a large protein complex. We recently developed a new form of artificial lipid bilayer that in addition to exceptional stability, and simple reconstitution of membrane proteins, is capable of single-molecule fluorescence imaging and single-channel electrical recording with gigaohm seals. Droplet Interface Bilayers (DIBs) are created by contacting aqueous droplets in a lipid/oil solution. We propose to reconstitute the minimal components of the Tat system in Droplet Interface Bilayers to create a working in vitro model of this important biological pathway. Using this method we will exploit single-molecule imaging to dissect the individual steps of Tat-driven transport, and in particular quantify the changes in stoichiometry of the assembled complex that occur during transport.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MMSC (2009)

Novel therapeutic antibodies for multiple myeloma

Read More  

RENAL EPIGENETICS (2011)

Epigenetic modifications in glomerular nephropathy and renal aging

Read More  

MULTICYCHEM (2012)

Multifunctional Molecular Magnets through Cyanide Chemistry

Read More