Coordinatore | OULUN YLIOPISTO
Organization address
address: PENTTI KAITERAN KATU 1 contact info |
Nazionalità Coordinatore | Finland [FI] |
Totale costo | 5˙871˙072 € |
EC contributo | 4˙500˙000 € |
Programma | FP7-ICT
Specific Programme "Cooperation": Information and communication technologies |
Code Call | FP7-ICT-2007-1 |
Funding Scheme | CP |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-02-01 - 2011-04-30 |
# | ||||
---|---|---|---|---|
1 |
OULUN YLIOPISTO
Organization address
address: PENTTI KAITERAN KATU 1 contact info |
FI (OULU) | coordinator | 0.00 |
2 |
Nome Ente NON disponibile
Organization address
address: ESKISEHIR YOLU contact info |
TR (ANKARA) | participant | 0.00 |
3 |
BIAS BREMER INSTITUT FUR AGEWANDTESTRAHLTECHNIK GMBH
Organization address
address: KLAGENFURTER STRASSE contact info |
DE (BREMEN) | participant | 0.00 |
4 |
CONSIGLIO NAZIONALE DELLE RICERCHE
Organization address
address: PIAZZALE ALDO MORO contact info |
IT (ROMA) | participant | 0.00 |
5 |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address
address: BATIMENT CE 3316 STATION 1 contact info |
CH (LAUSANNE) | participant | 0.00 |
6 |
HOLOEYE PHOTONICS AG
Organization address
address: ALBERT EINSTEIN STRASSE contact info |
DE (BERLIN) | participant | 0.00 |
7 |
LYNCEE TEC SA
Organization address
address: PARC SCIENTIFIQUE EPFL, PSE-A contact info |
CH (LAUSANNE) | participant | 0.00 |
8 |
NATIONAL UNIVERSITY OF IRELAND MAYNOOTH
Organization address
address: CO KILDARE contact info |
IE (MAYNOOTH) | participant | 0.00 |
9 |
POLITECHNIKA WARSZAWSKA
Organization address
address: PLAC POLITECHNIKI contact info |
PL (WARSZAWA) | participant | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
Current and newly-developed 3D displays have the disadvantage that they either force the user to wear special eyewear, limit the number of simultaneous viewers, discard completely certain depth cues (such as blurring) thus causing fatigue, or else encode only a small number of distinct different views of the 3D scene. It is universally accepted that there is only one known family of techniques that can capture a full 3D scene in a single shot, including phase information, and re-project that light field perfectly thus overcoming all of the above disadvantages: the broad family of holography techniques. All other techniques are only 3D under a whole host of conditions.ntUnfortunately, holograms are not dynamic. By replacing the conventional holographic plate with a digital camera and an optoelectronic 2D screen, we can capture and display holographic video. However, the full implications of bringing a digital version of holography into the world of 3D video acquisition and 3D display, or how effective it would be, are as yet unknown. The 3D information encoded in digital holograms has not yet been fully exploited.ntWe will work towards eliminating the current obstacles in achieving the world's first fully functional 3D video capture and display paradigm for unrestricted viewing of real-world objects that employs all real 3D principles, hence our acronym 'Real 3D.' Our outputs will include functional models of four digital holographic 3D capture, processing, and display scenarios encompassing (i) the full 360 degrees of perspectives of reflective macroscopic 3D scenes, (ii) microscopic reflective 3D scenes, (iii) transmissive or partially transmissive microscopic 3D scenes, and (iv) capture of 3D scenes at infra-red wavelengths.