SHIFTIDES

Shifting the oligomerization equilibrium of proteins: a novel therapeutic strategy

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙250˙000 €
 EC contributo 1˙250˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2007-StG
 Funding Scheme ERC-SG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-07-01   -   2013-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Dr.
Nome: Assaf
Cognome: Friedler
Email: send email
Telefono: -6584776
Fax: -6584375

IL (JERUSALEM) hostInstitution 0.00
2    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Dr.
Nome: Eran
Cognome: Vardi
Email: send email
Telefono: -6585706
Fax: -6512235

IL (JERUSALEM) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

drug    tetramer    oligomerization    proteins    oligomeric    preferentially    inhibit    methodology    team    hiv    equilibrium    binding    shifting    molecular    active    interactions    shiftides    integrase    peptides    inactive    dimer    healthy    disease    protein    anti   

 Obiettivo del progetto (Objective)

'The aim of my project is to establish a multidisciplinary platform for quantitative biophysical analysis of protein-protein interactions in health and disease as a basis for drug design: (1) Analyzing protein-protein interactions at the molecular level in healthy systems; (2) Understanding what goes wrong in disease at the molecular level; (3) Development of drugs that will restore the biological system to its healthy conditions. My team will apply this approach to establish the concept of shifting the oligomerization equilibrium of proteins as a therapeutic strategy. I will expand the concepts of allosteric inhibitors and chemical chaperones, and develop the “shiftides”: peptides that shift the oligomerization equilibrium of a protein to modulate its activity, as a new and widely applicable methodology for drug design. I will apply this concept for: (1) inhibiting a protein by binding preferentially to the inactive oligomeric state and shifting the oligomerization equilibrium of the protein towards it; I have demonstrated the feasibility of this approach and developed promising anti-HIV peptides that inhibit the HIV-1 integrase and consequently HIV-1 replication in cells by shifting the integrase oligomerization equilibrium from the active dimer to the inactive tetramer. My team will further develop these peptides, and apply the same approach to inhibit the HIV proteins reverse transcriptase and protease; (2) Activating a protein by binding preferentially to the active oligomeric state and shifting the oligomerization equilibrium towards it: This will be applied for activation of the tumor suppressor p53, by shifting its oligomerization equilibrium from the inactive dimer to the active tetramer. Such shiftides will serve as anti-cancer lead compounds. My project will open new doors in the field of drug design, and at the end of the five-year period will result in a general new methodology to affect protein function for medical purposes.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

DYBHO (2010)

The dynamics of black holes: testing the limits of Einstein's theory

Read More  

ACUITY (2014)

Algorithms for coping with uncertainty and intractability

Read More  

BIOTIME (2010)

Biological diversity in an inconstant world: temporal turnover in modified ecosystems

Read More