ZEBRASOMWNT

Role of canonical Wnt signaling during somite formation in the zebrafish embryo

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Birgit
Cognome: Knepper-Nicolai
Email: send email
Telefono: -2103074
Fax: -2101391

 Nazionalità Coordinatore Germany [DE]
 Totale costo 158˙694 €
 EC contributo 158˙694 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-1-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-04-01   -   2008-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Birgit
Cognome: Knepper-Nicolai
Email: send email
Telefono: -2103074
Fax: -2101391

DE (MUENCHEN) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

wnt    molecular    link    patterning    signaling    specification    clock    oscillations    segmentation    lines    oscillating    pathway    notch    gene    somitogenesis    mesoderm    expression    somite    psm    boundary    later    front    zebrafish    determination   

 Obiettivo del progetto (Objective)

'Segmental elements of the vertebrate body plan, such as vertebrae, ribs and most skeletal muscles, derive from embryonic somites. Somitogenesis is a spatially periodic process that is prefigured in the presomitic mesoderm (PSM) by coordinated oscillations of gene expression that set the rhythm of the “segmentation clock”. The position in the PSM where these oscillations arrest is termed the determination front and is the site where segment boundary is positioned. Although the Delta/Notch pathway has recently been shown to synchronize oscillating cells, little is known about the molecular mechanisms that define the determination front and link it to the segmentation clock. The Wnt pathway has been hypothesized to provide such a link in mouse and chick, but its early effects on mesoderm specification and tail formation have made studying its role in later somite patterning difficult. Here we propose to investigate the role of Wnt signaling during somitogenesis in the zebrafish embryo, which offers unique accessibility to both genetics and imaging. In order to uncouple Wnt function in early mesoderm specification and somite patterning, we will use inducible transgenic zebrafish lines to transiently modulate Wnt signaling later in development. Our preliminary results clearly show that this transient disruption of Wnt specifically affects somite patterning. Thus we will combine this method with analysis of determination markers, boundary formation and oscillating gene expression to further explore the role of Wnt. We will also use a new quantitative time-lapse method to measure potential changes in oscillator period. Finally, we will test genetic interactions between Wnt and the Notch pathway by using mutant lines available in the Oates lab. Our project will thus take advantage of the zebrafish model to investigate the spatial and temporal functions of Wnt signaling in somitogenesis, providing a combined analysis at tissue, cellular and molecular levels.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DYNASTIIC (2012)

Dynamic Signal Transduction in Individual Cells

Read More  

INBIONET (2013)

Infection biology training network: shaping the future of infectious diseases treatments

Read More  

NANOSOIL (2012)

Nanoscale processes in soils: The role of mycorrhizal fungi in aggregation and phosphorus acquisition

Read More