Coordinatore | INSTITUT CURIE
Organization address
address: 26, rue d'Ulm contact info |
Nazionalità Coordinatore | France [FR] |
Totale costo | 164˙777 € |
EC contributo | 164˙777 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2007-4-2-IIF |
Funding Scheme | MC-IIF |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-11-01 - 2010-10-31 |
# | ||||
---|---|---|---|---|
1 |
INSTITUT CURIE
Organization address
address: 26, rue d'Ulm contact info |
FR (PARIS) | coordinator | 0.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The active propagation of electrochemical signals is widespread in biological organisms because of the need for efficient, rapid communication. Open questions about signaling remain because experiments with actual neurons are constrained by the neuron’s complex structure and intricate feedback. The goal of this project is to develop a minimal model of the neuron in which the active propagation of electrochemical signals can be readily studied. A Giant Unilamellar Vesicle (GUV) containing voltage-gated potassium channels will serve as the “soma” for this synthetic neuron. A long, membrane tube will be drawn out from this GUV to form an “axon”, and signal propagation along it studied with electrophysiology and fluorescence techniques. Predictions about the fundamental limits of biological signaling will be tested by measuring the speed and fidelity of the action potential as parameters including the diameter of the membrane tube, resting membrane potential and density of ion channels are varied. As intermediate goals, we will determine if membrane curvature induces protein sorting, and will also study how the shape and fluctuations of the GUV membrane are coupled to the activity of the ion channels. This project will contribute significantly to our understanding of active membranes and action potential dynamics. In the future, the skills and techniques learnt during the project may be applied to other complex processes such as signaling in networks, pacemaker activity and signal amplification cascades.'
European scientists provided an innovative model of neurons which is expected to revolutionise neurochemistry and aid the study of electrochemical signal transmission.