EXPANDERS

Expander Graphs in Pure and Applied Mathematics

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 1˙082˙504 €
 EC contributo 1˙082˙504 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-10-01   -   2014-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yehuda
Email: send email
Telefono: +972 2 6586676
Fax: +972 2 6513205

IL (JERUSALEM) hostInstitution 0.00
2    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Prof.
Nome: Alexander
Cognome: Lubotzky
Email: send email
Telefono: -4075
Fax: -295

IL (JERUSALEM) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

expander    recent    graphs    theory    computer    science    mathematics   

 Obiettivo del progetto (Objective)

'Expander graphs are finite graphs which play a fundamental role in many areas of computer science such as: communication networks, algorithms and more. Several areas of deep mathematics have been used in order to give explicit constructions of such graphs e.g. Kazhdan property (T) from representation theory of semisimple Lie groups, Ramanujan conjecture from the theory of automorphic forms and more. In recent years, computer science has started to pay its debt to mathematics: expander graphs are playing an increasing role in several areas of pure mathematics. The goal of the current research plan is to deepen these connections in both directions with special emphasis of the more recent and surprising application of expanders to group theory, the geometry of 3-manifolds and number theory.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

SHIFTIDES (2008)

Shifting the oligomerization equilibrium of proteins: a novel therapeutic strategy

Read More  

DYSTRUCTURE (2012)

The Dynamical and Structural Basis of Human Mind Complexity: Segregation and Integration of Information and Processing in the Brain

Read More  

NMNAG (2010)

New Methods in Non Archimedean Geometry

Read More