NANOSQUID

Scanning Nano-SQUID on a Tip

 Coordinatore WEIZMANN INSTITUTE OF SCIENCE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Israel [IL]
 Totale costo 2˙000˙000 €
 EC contributo 2˙000˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-12-01   -   2013-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Ms.
Nome: Talia
Cognome: Tzahor
Email: send email
Telefono: -3996
Fax: -4135

IL (REHOVOT) hostInstitution 0.00
2    WEIZMANN INSTITUTE OF SCIENCE

 Organization address address: HERZL STREET 234
city: REHOVOT
postcode: 7610001

contact info
Titolo: Prof.
Nome: Eli
Cognome: Zeldov
Email: send email
Telefono: -9341928
Fax: -9343513

IL (REHOVOT) hostInstitution 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

moving    nano    tip    magnetic    quantum    dynamics    nm    tools    vortex    dependent    single    phenomena    dynamic    superconductivity    physics    squid    imaging   

 Obiettivo del progetto (Objective)

'At the boundaries of physics research it is constantly necessary to introduce new tools and methods to expand the horizons and address fundamental issues. In this proposal, we will develop and then apply radically new tools that will enable groundbreaking progress in the field of vortex matter in superconductors and will be of great importance to condensed matter physics and nanoscience. We propose a new scanning magnetic imaging method based on self-aligned fabrication of Josephson junctions with characteristic sizes of 10 nm and superconducting quantum interference devices (SQUID) with typical diameter of 100 nm on the end of a pulled quartz tip. Such nano-SQUID on a tip will provide high-sensitivity high-bandwidth mapping of static and dynamic magnetic fields on nanometer scale that is significantly beyond the state of the art. We will develop a new washboard frequency dynamic microscopy for imaging of site-dependent vortex velocities over a remarkable range of over six orders of magnitude in velocity that is expected to reveal the most interesting dynamic phenomena in vortex mater that could not be investigated so far. Our study will provide a novel bottom-up comprehension of microscopic vortex dynamics from single vortex up to numerous predicted dynamic phase transitions, including disorder-dependent depinning processes, plastic deformations, channel flow, metastabilities and memory effects, moving smectic, moving Bragg glass, and dynamic melting. We will also develop a hybrid technology that combines a single electron transistor with nano-SQUID which will provide an unprecedented simultaneous nanoscale imaging of magnetic and electric fields. Using these tools we will carry out innovative studies of additional nano-systems and exciting quantum phenomena, including quantum tunneling in molecular magnets, spin injection and magnetic domain wall dynamics, vortex charge, unconventional superconductivity, and coexistence of superconductivity and ferromagnetism.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

REDUNDANCY (2013)

Functional redundancy of bacterial communities in the laboratory and in the wild

Read More  

DECCAPAC (2011)

Design and Exploitation of C-C and C-H Activation Pathways in Asymmetric Catalysis

Read More  

LIA (2014)

Light Field Imaging and Analysis

Read More