Coordinatore | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | France [FR] |
Totale costo | 1˙869˙450 € |
EC contributo | 1˙869˙450 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2008-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2008 |
Periodo (anno-mese-giorno) | 2008-12-01 - 2013-11-30 |
# | ||||
---|---|---|---|---|
1 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | hostInstitution | 1˙869˙450.00 |
2 |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Organization address
address: Rue Michel -Ange 3 contact info |
FR (PARIS) | hostInstitution | 1˙869˙450.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The key objective of this project is to promote cleaner and more efficient combustion technologies through the development of theoretically grounded and more accurate chemical models. This is motivated by the fact that the current models which have been developed for the combustion of constituents of gasoline, kerosene, and diesel fuels do a reasonable job in predicting auto-ignition and flame propagation parameters, and the formation of the main regulated pollutants. However their success rate deteriorates sharply in the prediction of the formation of minor products (alkenes, dienes, aromatics, aldehydes) and soot nano-particles, which have a deleterious impact on both the environment and on human health. At the same time, despite an increasing emphasis in shifting from hydrocarbon fossil fuels to bio-fuels (particularly bioethanol and biodiesel), there is a great lack of chemical models for the combustion of oxygenated reactants. The main scientific focus will then be to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels (hydrocarbons and oxygenated compounds) and to elucidate the formation of a large number of hazardous minor pollutants. The core of the project is to describe at a fundamental level more accurately the reactive chemistry of minor pollutants within extensively validated detailed mechanisms for not only traditional fuels, but also innovative surrogates, describing the complex chemistry of new environmentally important bio-fuels. At the level of individual reactions rate constants, generalized rate constant classes and molecular data will be enhanced by using techniques based on quantum mechanics and on statistical mechanics. Experimental data for validation will be obtained in well defined laboratory reactors by using analytical methods of increased accuracy.'
Phase Transitions and Chemical Reactions in Electric Field Gradients
Read MoreAn in vivo imaging approach to understand pancreatic beta-cell signal-transduction
Read MoreRole of the transcription factor ChREBP and its associated proteins in the development and progression of NAFLD
Read More