GUTDROSO

Gut immunity and homeostasis in Drosophila

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙485˙626 €
 EC contributo 1˙485˙626 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-04-01   -   2014-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Ms.
Nome: Caroline
Cognome: Vandevyver
Email: send email
Telefono: +41 21 693 4977
Fax: +41 21 693 5585

CH (LAUSANNE) hostInstitution 1˙485˙627.00
2    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Prof.
Nome: Bruno
Cognome: Lemaitre
Email: send email
Telefono: +41 21 693 18 31
Fax: + 41 21 693 17 90

CH (LAUSANNE) hostInstitution 1˙485˙627.00

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

tools    paradigm    host    immune    model    years    drosophila    dissect    commensal    powerful    systemic    animal    defenses    gut    pathogens    immunity   

 Obiettivo del progetto (Objective)

'The gut is the major interface between microbes and their animal hosts and constitutes the main entry route for pathogens. As a consequence gut cells must be armed with efficient immune defenses to combat invasion and colonisation by pathogens. However, the gut also harbors a flora of commensal bacteria, with potentially beneficial effects for the host, which must be tolerated without a chronic, and harmful, immune response. In recent years Drosophila has emerged as a powerful model to dissect host-pathogen interactions, leading to the paradigm of antimicrobial peptide regulation by the Toll and Imd signaling pathways. The strength of this model derives from the availability of powerful and cost effective genetic and genomic tools as well as the high degree of similarities to vertebrate innate immunity. However, in spite of growing interest in gut mucosal immunity generally, very little is known about the immune response of the Drosophila gut. Using powerful new tools and those developed in the study of the systemic response, we propose to raise our understanding of Drosophila gut immunity to the same level as that of systemic immunity within the next five years. This project will involve integrated approaches to dissect not only the gut immune response but also gut homeostasis in the presence of commensal microbiota, as well as strategies used by entomopathogens to circumvent these defenses. We believe that the fundamental knowledge generated on Drosophila gut immunity will serve as a paradigm of epithelial immune reactivity and have a wider impact on our comprehension of animal defense mechanisms.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CALENDS (2013)

Clusters And LENsing of Distant Sources

Read More  

DIBOSON (2011)

Direct and Indirect Searches for New Physics with Diboson Final States at ATLAS

Read More  

OPTION (2010)

Optimizing Policies for Transport: accounting for Industrial Organisation in Network markets

Read More