UNIC

Ultracold negative ions by laser cooling

 Coordinatore MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V. 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙115˙970 €
 EC contributo 1˙115˙970 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-07-01   -   2016-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Alban
Cognome: Kellerbauer
Email: send email
Telefono: +49 6221 516138

DE (MUENCHEN) hostInstitution 1˙115˙970.00
2    MAX PLANCK GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E.V.

 Organization address address: Hofgartenstrasse 8
city: MUENCHEN
postcode: 80539

contact info
Titolo: Dr.
Nome: Günter
Cognome: Sparn
Email: send email
Telefono: +49 6221 516600

DE (MUENCHEN) hostInstitution 1˙115˙970.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

transitions    cooling    valence    laser    neutral    few    ultracold    levels    ions    technique    ground    atomic    excited    anions    osmium    years    ion    transition    electron    negative   

 Obiettivo del progetto (Objective)

'Laser cooling is a well-established technique for the creation of ultracold particle ensembles in beams or traps. Over the past 30 years, it has become an indispensable tool in atomic physics and has opened many exciting new research fields. Both in positive atomic ions and in neutral atoms, the valence electron is bound in a Coulomb potential. The resulting infinite series of excited states provides a wide choice of suitable cooling transitions in many ionic and atomic systems. Surprisingly, laser cooling of negative atomic ions has never been achieved. The binding of the valence electron in these systems is based on electron electron correlation effects, which drop off quickly as the excess electron is removed from the neutral core. Consequently, anions are easily neutralized and only a few of them have excited levels. When excited states do occur, they are usually sub-levels of the ground state, meaning that transitions between the ground and excited state are weak and laser cooling would take prohibitively long. However, only a few years ago, a strong transition between the ground state and an opposite-parity excited state was found in the negative osmium ion. With this discovery, the laser cooling of atomic anions has finally come into reach. High-resolution optical spectroscopy on negative osmium has been carried out by the applicant, confirming the existence of a potential laser cooling transition. The aim of the proposed project is the first-ever demonstration of atomic-anion laser cooling. Ultimately, laser-cooled atomic anions could be used to cool any other negative-ion species by confining them simultaneously in a trap. The proposed technique is therefore applicable to a wide range of research fields in which ultracold negative ions are required.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

RAC (2011)

Randomness and Computation

Read More  

PHONICS (2014)

Positioning the nucleus for cell migration and muscle fiber function

Read More  

STRANGERS (2010)

"Cooperation among strangers: experiments with social norms, institutions, and money"

Read More