CORTEX

Computations by Neurons and Populations in Visual Cortex

 Coordinatore UNIVERSITY COLLEGE LONDON 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 2˙499˙921 €
 EC contributo 2˙499˙921 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-04-01   -   2014-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Mr.
Nome: Michael
Cognome: Browne
Email: send email
Telefono: 442031000000
Fax: 442078000000

UK (LONDON) hostInstitution 2˙499˙921.00
2    UNIVERSITY COLLEGE LONDON

 Organization address address: GOWER STREET
city: LONDON
postcode: WC1E 6BT

contact info
Titolo: Prof.
Nome: Matteo
Cognome: Carandini
Email: send email
Telefono: + 44 20 7608 6854

UK (LONDON) hostInstitution 2˙499˙921.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

inputs    feedforward    cortex    cortical    lateral    concerning    individual    mechanisms    neurons    stimulus    responses    hypothesis    contribution    regime    area    cognitive    nearby    ascribes    mice    camp    populations    inhibition    synaptic   

 Obiettivo del progetto (Objective)

'Neurons in primary visual cortex (area V1) receive feedforward inputs from thalamic afferents and lateral inputs from other cortical neurons. Little is known about how these components interact to determine the responses of a V1 neuron. One camp ascribes most responses to feedforward mechanisms. The other camp ascribes them mostly to lateral interactions. We propose that these two apparently opposed views can be simply reconciled in a single framework. We hypothesize that area V1 can operate both in a feedforward regime and in a lateral interaction regime, depending on the nature of the stimulus and on the cognitive task at hand, and that the transition from one regime to the other is governed by synaptic inhibition. We will test these hypotheses by recording from individual V1 neurons while monitoring the activity of nearby populations of cortical neurons via multiprobe electrodes. In Aim 1 we will relate the activity of V1 neurons to that of nearby populations. We will use simple measures of correlation and nonlinear models that predict individual spikes to measure how responses depend on a feedforward contribution (the receptive field ) and on a lateral contribution (the connection field ). We will test our first hypothesis, concerning the role of the stimulus in changing this dependence. In Aim 2 we will extend these results to a behaving animal. We will record from V1 of mice performing a 2-alternative forced-choice psychophysical task, and we will test our second hypothesis, concerning the role of the cognitive task in determining the operating regime of the cortex. In Aim 3 we will seek a biophysical interpretation of the functional mechanisms and effective connectivity revealed by the previous Aims. We will test our third hypothesis, concerning the role of synaptic inhibition. The tools involved will include intracellular recordings and optical stimulation in transgenic mice whose cortical neurons are sensitive to light.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

GCGXC (2014)

GenoChemetics: Gene eXpression enabling selective Chemical functionalisation of natural products

Read More  

PROBIOTIQUS (2013)

Processing of biomolecular targets for interferometric quantum experiments

Read More  

FROMCHILDTOPARENT (2010)

From the Child's Genes to Parental Environment and Back to the Child: Gene-environment Correlations in Early Social Development

Read More