Coordinatore | TECHNISCHE UNIVERSITAET MUENCHEN
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Germany [DE] |
Totale costo | 1˙999˙992 € |
EC contributo | 1˙999˙992 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2008-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2009 |
Periodo (anno-mese-giorno) | 2009-03-01 - 2014-06-30 |
# | ||||
---|---|---|---|---|
1 |
HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Organization address
address: Ingolstaedter Landstrasse 1 contact info |
DE (MUENCHEN) | beneficiary | 92˙253.97 |
2 |
TECHNISCHE UNIVERSITAET MUENCHEN
Organization address
address: Arcisstrasse 21 contact info |
DE (MUENCHEN) | hostInstitution | 1˙907˙738.00 |
3 |
TECHNISCHE UNIVERSITAET MUENCHEN
Organization address
address: Arcisstrasse 21 contact info |
DE (MUENCHEN) | hostInstitution | 1˙907˙738.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'With re-defined challenges in post-genome biology and medicine related to understanding the regulation and function of genes, proteins and multi-factorial disease, the development of accelerated and quantitative in-vivo observation of functional -omics at different system levels becomes a vital target. This proposal offers to develop therefore a next-generation biomedical imaging platform, designed to radically impact biomedical and drug discovery applications. The imaging strategy aims at resolving powerful optical reporters (fluorescent proteins, nanoparticles, optical probes) with 10-100 micron resolution and femptomole sensitivity through several millimeters to centimeters of tissue. This performance brings unprecedented ability to non-invasively visualize biological and molecular processes in-vivo in intact organisms over time.
To achieve these goals, the proposal considers first the development of multi-spectral opto-acoustic tomography (MSOT) as a high performance method for revolutionizing biomedical imaging. Then, the proposal offers to develop powerful application areas in visualizing functional –omics, disease growth and drug effectiveness. The advancements offered herein can become a highly preferred biomedical imaging modality while offering ground-breaking imaging performance, safe non-ionizing radiation, an easy to disseminate platform, and unparalleled flexibility in capitalizing on powerful optical contrast using molecular reporters.'
4D-EEG: A new tool to investigate the spatial and temporal activity patterns in the brain
Read MoreBeads on String Genomics: Experimental Toolbox for Unmasking Genetic / Epigenetic Variation in Genomic DNA and Chromatin
Read MoreDetermining the roles of the nuclear periphery in mammalian genome function
Read More