ADAPTIVES

Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVES

 Coordinatore  

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Non specificata
 Totale costo 690˙000 €
 EC contributo 690˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-StG
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-06-01   -   2015-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS

 Organization address address: N PLASTIRA STR 100
city: HERAKLION
postcode: 70013

contact info
Titolo: Ms.
Nome: Zinovia
Cognome: Papatheodorou
Email: send email
Telefono: +30 2810 391522
Fax: +30 2810 391555

EL (HERAKLION) hostInstitution 690˙000.00
2    FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS

 Organization address address: N PLASTIRA STR 100
city: HERAKLION
postcode: 70013

contact info
Titolo: Prof.
Nome: Chrysoula
Cognome: Tsogka
Email: send email
Telefono: 302810000000

EL (HERAKLION) hostInstitution 690˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

clutter    noise    propagation    data    imaging    numerical    medium    applicability    coherent    smoothing    cint    extend   

 Obiettivo del progetto (Objective)

'The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

CHEMAGEB (2013)

CHEMometric and High-throughput Omics Analytical Methods for Assessment of Global Change Effects on Environmental and Biological Systems

Read More  

GRAPH GAMES (2011)

Quantitative Graph Games: Theory and Applications

Read More  

QSPINMOTION (2013)

Quantum coherence and manipulation of a single flying electron spin

Read More