Coordinatore | UNIVERSITY OF BRISTOL
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | United Kingdom [UK] |
Totale costo | 1˙579˙277 € |
EC contributo | 1˙579˙277 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2009-AdG |
Funding Scheme | ERC-AG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-04-01 - 2015-03-31 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITY OF BRISTOL
Organization address
address: TYNDALL AVENUE SENATE HOUSE contact info |
UK (BRISTOL) | hostInstitution | 1˙579˙277.00 |
2 |
UNIVERSITY OF BRISTOL
Organization address
address: TYNDALL AVENUE SENATE HOUSE contact info |
UK (BRISTOL) | hostInstitution | 1˙579˙277.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'The creation of new molecular entities and subsequent exploitation of their properties is central to a broad spectrum of research disciplines from medicine to materials. However, despite substantial progress, the problems and difficulties associated with chemical syntheses severely limits the development of these disciplines. In order to meet the emerging challenges across new disciplinary boundaries in a rapidly changing scientific landscape we require a step-change in the development of more rapid and robust techniques in organic synthesis. Our plan is to develop new reactions and strategies which enable us to essentially grow a carbon chain with complete control over its shape (stereochemistry) and functionality (which groups are incorporated). Specifically, we propose to create a family of chiral carbanions with good leaving groups attached which can be inserted into C-B bonds sequentially and in one pot so that at the end of the operation a complex natural product, pharmaceutical or material will be produced. Our ultimate vision is to render complex organic synthesis as easy as peptide/oligonucleotide synthesis is now by attaching the boronic esters to a solid support and automating the steps. This would enable complex organic molecules to be accessible even by non-experts in synthesis. Furthermore, by variation of the reagents and their stereochemistry any compound and any stereoisomer will be accessible thus allowing diversity elements to be introduced without additional cost. The impact for organic synthesis and the wider scientific community is immense as it will allow the properties and potential function of complex molecules (from pharmaceuticals to materials) to be studied and then exploited. It is enabling science.'