DNA MACHINES

Nanomachines based on interlocked DNA architectures

 Coordinatore RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 2˙499˙522 €
 EC contributo 2˙499˙522 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-AdG_20100224
 Funding Scheme ERC-AG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN

 Organization address address: REGINA PACIS WEG 3
city: BONN
postcode: 53113

contact info
Titolo: Ms.
Nome: Daniela
Cognome: Hasenpusch
Email: send email
Telefono: +49 228 737274
Fax: +49 228 736479

DE (BONN) hostInstitution 2˙499˙522.00
2    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN

 Organization address address: REGINA PACIS WEG 3
city: BONN
postcode: 53113

contact info
Titolo: Prof.
Nome: Michael
Cognome: Famulok
Email: send email
Telefono: +49228 731787
Fax: +49228 735388

DE (BONN) hostInstitution 2˙499˙522.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

logic    stranded    wherein    machines    components    interlocked    engineering    ds    nanotechnology    assembly    architectures    nanomachines    motion    double    individual    synthetic    dna   

 Obiettivo del progetto (Objective)

'DNA-nanotechnology has created different topologies, including replicable ones, nanomachines, patterns, logic gates, or algorithmic assemblies. Interlocked double-stranded (ds) DNA-architectures like catenanes or rotaxanes, wherein individual components can be set in motion in a controlled manner have not been accessible. These molecules represent long-sought devices for nanorobotics and nanomechanics because they possess a unique mechanical bonding motif, not available to conventional building blocks. The project will apply an unprecedented, simple, and modular interlocking paradigm for double-stranded (ds) circular DNA geometries that we have developed in preliminary studies. This will now be taken several crucial steps forward by generating unconventional DNA-, protein-, aptamer-, and ribozyme hybrid architectures containing interlocked structures wherein the motion of individual components can be controlled in many different ways. We will design, construct, and evaluate switchable autonomous DNA-nanomachines that function as rotational motors, muscles, or switches for powering and manipulating nanoscale components. The DNA machines envisaged in this project will be applied, for example, in synthetic supramolecular self-assembly systems that emulate complex biological machines like motor proteins, nucleic acid polymerases, or ATPases. In addition, they will be developed for multiple purposes in biosensing, logic-gate- and memory circuit assembly, and catalysis. This efficient method for constructing interlocked dsDNA nanostructures opens the exciting possibility of conjoining the area of lifesciences with that of nanomechanical engineering, paving entirely new avenues for nanotechnology. The project is highly interdisciplinary and will open a new field with enormous innovative potential and implications ranging from chemistry to synthetic biology, and from the life sciences to nano-engineering.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

ELECTROTALK (2012)

Starting an electrical conversation between microorganisms and electrodes to achieve bioproduction

Read More  

P73CANCER (2010)

p73 dependence in cancer: from molecular mechanisms to therapeutic targeting

Read More  

RET-IPSC (2014)

"Exploiting the power of human induced pluripotent stem cells to generate synthetic retinae in vitro for cell based therapies, drug discovery and disease modelling"

Read More