ESKIN

Stretchable Electronic Skins

 Coordinatore ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 1˙499˙737 €
 EC contributo 1˙499˙737 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2016-02-29

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Dr.
Nome: Stephanie
Cognome: Perichon Ep Lacour
Email: send email
Telefono: +41 21 693 5582
Fax: +41 21 693 5583

CH (LAUSANNE) hostInstitution 1˙499˙737.60
2    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

 Organization address address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015

contact info
Titolo: Ms.
Nome: Caroline
Cognome: Vandevyver
Email: send email
Telefono: +41 21 693 4977
Fax: +41 21 693 5585

CH (LAUSANNE) hostInstitution 1˙499˙737.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

electronic    biological    biomedical    materials    mechanical    hard    elastic    stretchable    device    soft    surfaces   

 Obiettivo del progetto (Objective)

'Future electronic systems will be soft and elastic. I propose to explore the materials, technology and integration of stretchable electronic systems, which will transform at will, evenly coat a spherical lens, or smoothly interface with a delicate biological organ. Electronics will be anywhere as well as everywhere. The proposed programme has the potential to emulate yet another revolution in the microelectronics industry and trigger transformations in the biomedical sector. The ESKIN programme is an ambitious and highly interdisciplinary endeavour requiring expertise at the frontier of engineering, material sciences, biotechnology and neuroscience. Stretchability in an electronic system is its ability to negotiate mechanical deformations without letting them interfere with its electrical functionality. This is a novel and challenging demand on electronic device technology, which has, to date, mainly pushed for smaller scale fabrication and increased performance. Furthermore the natural compliance of biological tissues and cells calls for softer electronic biomedical interfaces. Overcoming the hard to soft mechanical mismatch will, without doubt, open up new horizons in biomedical research and its related industries. The manufacture of stretchable electronic skins will then require working out the underlying science and technology for active device materials on soft, elastic substrates. This capability will further be implemented to demonstrate various soft and elastic electronic systems ranging from stretchable displays to long-term neural implants. My philosophy is to exploit as much as possible current micro/nanofabrication techniques available for hard surfaces but to tailor them to soft surfaces , optimizing and improving them where needed, in order to ensure rapid transition to worldwide distributed consumer and healthcare products.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PREHISTORIC ANATOLIA (2011)

From Sedentism to Proto-Urban Societies in Western Anatolia

Read More  

CONIA (2013)

Core/Shell nanoparticle electrocatalysts for fuel cell applications: probing the market potential of Atomic Layer Deposition (ALD) coatings

Read More  

SPICY (2012)

Spatial Integration in Cell Cytoskeleton

Read More