BIONANOPORE

Biomimetic nanopore for a mechanistic study of the nuclear pore complex

 Coordinatore TECHNISCHE UNIVERSITEIT DELFT 

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Ms.
Nome: Jose
Cognome: Van Vugt
Email: send email
Telefono: 31152786064
Fax: 31152787413

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 185˙540 €
 EC contributo 185˙540 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IIF
 Funding Scheme MC-IIF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-06-01   -   2013-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT

 Organization address address: Stevinweg 1
city: DELFT
postcode: 2628 CN

contact info
Titolo: Ms.
Nome: Jose
Cognome: Van Vugt
Email: send email
Telefono: 31152786064
Fax: 31152787413

NL (DELFT) coordinator 185˙540.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

dekker    vitro    transport    proteins    molecule    solid    biochemistry    pore    largely    mechanistic    biomimetic    nuclear    npc    single    selectivity    electrical    mechanism    eukaryotic   

 Obiettivo del progetto (Objective)

'Compartmentalization of the eukaryotic genome into a nucleus necessitates nuclear import and export to achieve basic cellular processes. The nuclear pore complex (NPC) is a large (60 - 125 MDa) macromolecular structure in eukaryotic cells, where it spans the nuclear membrane and serves as the gatekeeper of nucleocytoplasmic transport. While water, ions, and small molecules can freely diffuse through the NPC, macromolecules larger than 25 - 40 kDa cannot pass the NPC’s permeability barrier unless ferried by specific transport proteins called nuclear transport receptors (NTRs). While the structural arrangement and biochemistry of the complex have been largely worked out, the underlying mechanism of the pore’s transport and selectivity remains poorly understood. Mechanistic studies of the NPC have been largely carried out in vivo because in vitro reconstitution of the complex is not possible. Here, I propose to develop a biomimetic NPC-like system based on solid-state nanopore technology to conduct a real-time, single-molecule investigation into the mechanism of NPC transport and selectivity. Both electrical detection and a novel optical-electrical method will be used to monitor the translocation of individual substrates through a single biomimetic pore. The biomimetic approach proposed here will provide a significant step forward in experimentally studying the NPC, by affording an in vitro system that will allow for rigorous testing of key NPC proteins and their mechanistic role in transport and selectivity. This work will be carried out in the laboratory of Professor Cees Dekker, who is a world leader in nanofabrication and the application of solid-state nanopores to biology. My expertise in single-molecule biophysics, fluorescence microscopy, and biochemistry is well suited to complement the resources of the Dekker lab to collectively meet the interdisciplinary demands of this innovative effort.'

Altri progetti dello stesso programma (FP7-PEOPLE)

GBX IN FISH RBCS (2014)

Expression and function of globin X in nucleated red blood cells of fish

Read More  

EVOLVINGROBOT (2010)

Autonomous evolution of robotic organisms

Read More  

HERMES (2013)

Humboldt in Europe: Researcher Mobility on an Enhanced Scale

Read More