OLIGPROCESSEXTENSION

Study of proteins involved in oligodendrocyte process extension that regulate axon-glia interactions

 Coordinatore INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR - IBMC 

 Organization address address: RUA DO CAMPO ALEGRE 823
city: PORTO
postcode: 4150 180

contact info
Titolo: Dr.
Nome: Claudia
Cognome: Ferreira
Email: send email
Telefono: 351226000000
Fax: 351226000000

 Nazionalità Coordinatore Portugal [PT]
 Totale costo 159˙649 €
 EC contributo 159˙649 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2013-08-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR - IBMC

 Organization address address: RUA DO CAMPO ALEGRE 823
city: PORTO
postcode: 4150 180

contact info
Titolo: Dr.
Nome: Claudia
Cognome: Ferreira
Email: send email
Telefono: 351226000000
Fax: 351226000000

PT (PORTO) coordinator 159˙649.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

rho    us    additionally    demyelinating    ms    molecules    caused    myelination    myelin    oligodendrocyte    disease    signaling    remyelination    cultures    axon    oligodendrocytes    cells    cns    regulate    cell   

 Obiettivo del progetto (Objective)

'Oligodendrocytes are the myelinating cells of the central nervous system (CNS). The importance of myelination is illustrated by the neurological consequences caused by demyelination, the process or state resulting from the loss or destruction of myelin such as in multiple sclerosis (MS), the most frequent CNS chronic demyelinating disease. Failure of remyelination is thought to be the major cause of MS disease progression and may be caused by the incapacity of oligodendrocyte progenitor cells (OPC) to differentiate into myelin-competent oligodendrocytes. Rho GTPases regulate signaling pathways involved in actin cytoskeleton, microtubule dynamics, cell polarity, membrane trafficking and gene transcription. They are expressed by oligodendrocytes and are likely to be involved in some of the events leading to myelination, but their role in this process is still poorly investigated. Additionally, in the context of MS and remyelination, the modulation and/or activity of such molecules in oligodendrocytes has still not been addressed. Therefore, we intend to characterize the network of molecules associated with Rho GTPase signaling responsible for regulating oligodendrocyte cell spreading, process extension, and formation of the highly ramified processes typical of differentiating oligodendrocytes using proteomics and interference RNA-based functional assays in primary cultures and in axon-oligodendrocytes co-cultures. Additionally, we want to evaluate if and how the expression and activities of such molecules are affected by the inflammatory milieu, in vitro and in vivo using experimental autoimmune encephalomyelitis (EAE) animal models. This knowledge will allow us to gain valuable insight into the mechanisms that regulate the establishment and stabilization of oligodendrocyte-axon cell–cell interactions and how their impairment compromise remyelination in demyelinating diseases such as MS. Hopefully, this knowledge will help us to design better therapeutic strategies.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MAJORANA (0)

Identifying and manipulating the elusive Majorana fermions in topological insulators and superconductors

Read More  

SANITAS (2011)

Sustainable and integrated urban water system management

Read More  

PRECISIONJETS4LHC (2013)

Precise Predictions for Higgs and New Physics Signals with Jets at the Large Hadron Collider

Read More