Coordinatore | UNIVERSIDAD DE GRANADA
Organization address
address: CUESTA DEL HOSPICIO SN contact info |
Nazionalità Coordinatore | Spain [ES] |
Totale costo | 177˙380 € |
EC contributo | 177˙380 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2010-IEF |
Funding Scheme | MC-IEF |
Anno di inizio | 2012 |
Periodo (anno-mese-giorno) | 2012-03-26 - 2014-03-25 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSIDAD DE GRANADA
Organization address
address: CUESTA DEL HOSPICIO SN contact info |
ES (GRANADA) | coordinator | 177˙380.80 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'This project will study the interplay between structure and dynamics in soft matter. Soft materials are of great practical importance and are ubiquitously present in our daily environment. We will focus on network-forming liquids (NFLs), which are part of the general class of complex fluids characterised by an inherent coupling between their structure and dynamics. NFLs display the strikingly cooperative dynamical behaviour found in many different materials and will be used as a paradigm of complex dynamical behaviour in soft matter. We wish to obtain a microscopic understanding of heterogeneous dynamics, dynamical arrest at the gelation and glass transitions, and nonlinear rheological properties such as shear-thickening, shear-thinning, rheochaos and fracture dynamics. The coupling of structure and dynamics in NFLs suggests that a fundamental link can be made between microscopic mechanisms and complex dynamical behaviour.
We will use simulations to study a simple model system, originally devised experimentally, composed of meso-particles in a water solvent linked by polymers. Data can be obtained using advanced numerical simulation techniques, capable of bridging the broad time and length scales involved in this system. A number of different, complementary techniques will be employed including analysis of the potential energy landscape, network analysis and constraint theory, drawing on analogous studies of glassy systems. With this simple model, we will bring together different (and sometimes contradictory) perspectives of slow dynamics in disordered condensed matter, offering a global, coherent microscopic understanding of dynamic heterogeneities and other anomalous dynamical properties in NFLs.
This project provides a vital stepping stone for the researcher to forge an independent career, enhancing her research skills with broad interdisciplinary expertise and supporting her career development, through structured training in research and complementary skills.'
Molecules in the liquid state can come together in unique ways forming solid or solid-like materials in the case of gel or glass. EU funding helped elucidate relationships between microscopic mechanisms and complex dynamical behaviours.