Opendata, web and dolomites

HyPump

Enabling Sustainable Irrigation through Hydro-Powered Pump for Canals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HyPump project word cloud

Explore the words cloud of the HyPump project. It provides you a very rough idea of what is the project "HyPump" about.

150    variants    efficiency    pressure    canals    technologies    prototype    leveraging    successfully    sprinkler    irrigate    intensive    modernized    came    water    irrigation    agriculture    river    yield    strategies    least    communities    agricultural    striving    designed    of    population    90    wheel    size    floating    expenditure    solar    environmental    conventional    waterwheels    primary    dietary    competitive    29    hypump    savings    small    footprint    integrating    electric    feed    times    solution    dramatically    globe    ongoing    drip    farmers    pump    climate    electricity    policy    serve    scalable    stay       customers    standard    kw    maximum    substantial    fed    conservation    power    pending    introduction    makers    efficient    drastically    context    lab    reduce    exacerbated    world    aqysta    respect    alternative    70    profitable    successful    allowed    demand    food    launch    operate    benefit    practices    rain    proven    hydrostatic    consumption    energy    fuel    expenses    capital    pumps    patterns    barsha    patent    turn   

Project "HyPump" data sheet

The following table provides information about the project.

Coordinator
AQYSTA HOLDING BV 

Organization address
address: MOLENGRAAFFSINGEL 12
city: DELFT
postcode: 2629 JD
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website http://www.aqysta.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.2.4. (Sustainable and competitive bio-based industries and supporting the development of a European bioeconomy)
2. H2020-EU.3.2.1. (Sustainable agriculture and forestry)
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
4. H2020-EU.3.2.2. (Sustainable and competitive agri-food sector for a safe and healthy diet)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2017-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AQYSTA HOLDING BV NL (DELFT) coordinator 50˙000.00

Map

 Project objective

The growing world population and the change in dietary patterns will dramatically increase the demand for food and feed, which will turn into a greater use of water, agriculture’s primary production factor. In a context exacerbated by the ongoing climate change, which results in farmers’ increasing need to irrigate cost-efficiently to stay competitive, policy makers around the globe are striving to implement strategies and new technologies for better use and conservation of water resources. However, while the introduction of new drip and sprinkler-based irrigation practices allowed substantial water savings, these came at the expenses of an increase of energy consumption and capital expenditure, making modernized irrigation less profitable. Leveraging on the successful launch of the Barsha Pump, a floating river pump for small-scale farmers throughout the world, which does not require any fuel, electricity to operate, aQysta will develop and demonstrate a large-scale system for canals (with a power of 1.5 kW, compared to 150 W for floating river pumps) that can serve the needs of irrigation communities in Europe. This will be achieved by integrating the patent-pending Barsha Pump with the Hydrostatic Pressure Wheel concept, which is up to 90% efficient, compared to only 29.6% maximum efficiency of floating waterwheels and has been successfully proven as a prototype in both lab conditions and in field. This novel HyPump system will be designed as a size-scalable concept, allowing for several variants according to the specific needs of the targeted customers in Europe, and will allow users to benefit from up to 6-times increase in agricultural yield (compared to rain-fed irrigation) and up to 70% savings on operating costs with respect to standard fuel or electric pumps. Furthermore, the proposed solution will drastically reduce the environmental footprint with respect to conventional pumps and is at least 2 times less capital intensive compared to solar alternative.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYPUMP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYPUMP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.2.4.;H2020-EU.3.2.1.;H2020-EU.2.3.1.;H2020-EU.3.2.2.)

ARMeD_free (2017)

Antibiotic resistance-free meat and dairy products

Read More  

FucoPol (2017)

An innovative bio-based platform for the cost-competitive production of L-fucose, a building block for Human Milk Oligosaccharides (HMOs).

Read More  

RA-RAKE (2017)

A Novel Double Wheel Rake Machine to provide high quality fodder and high operational speed

Read More