Opendata, web and dolomites

ANADEL SIGNED

Analysis of Geometrical Effects on Dispersive Equations

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ANADEL project word cloud

Explore the words cloud of the ANADEL project. It provides you a very rough idea of what is the project "ANADEL" about.

despite    exist    life    toy    quasilinear    nonlinear    refinements    appear    theory    clusters    linear    harmonic    quantum    solutions    theoretic    limited    equations    pointwise    manifolds    good    geometric    packets    parametrices    schr    background    radar    physics    concerned    green    direct    connections    propagation    technologies    context    media    first    extend    dinger    mathematical    significantly    efficient    ouml    rough    fiber    boundary    singularities    microlocal    tools    dispersive    approximate    computed    questions    independent    sharp    physically    ones    sonar    naturally    decade    influence    wave    birth    hyperbolic    scope    waves    eigenfunctions    caustics    motivated    chaos    boundaries    concentration    dispersion    progress    respect    compact    pdes    motivations    heart    localization    models    few    bounds    dealing    optic    quantitative    name    space    sometimes    last    earlier    homogeneous    settings    heterogeneous    spreading    curved    functions    infinity    arbitrarily    tomography   

Project "ANADEL" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙293˙763 €
 EC max contribution 1˙293˙763 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙293˙763.00

Map

 Project objective

We are concerned with localization properties of solutions to hyperbolic PDEs, especially problems with a geometric component: how do boundaries and heterogeneous media influence spreading and concentration of solutions. While our first focus is on wave and Schrödinger equations on manifolds with boundary, strong connections exist with phase space localization for (clusters of) eigenfunctions, which are of independent interest. Motivations come from nonlinear dispersive models (in physically relevant settings), properties of eigenfunctions in quantum chaos (related to both physics of optic fiber design as well as number theoretic questions), or harmonic analysis on manifolds.

Waves propagation in real life physics occur in media which are neither homogeneous or spatially infinity. The birth of radar/sonar technologies (and the raise of computed tomography) greatly motivated numerous developments in microlocal analysis and the linear theory. Only recently toy nonlinear models have been studied on a curved background, sometimes compact or rough. Understanding how to extend such tools, dealing with wave dispersion or focusing, will allow us to significantly progress in our mathematical understanding of physically relevant models. There, boundaries appear naturally and most earlier developments related to propagation of singularities in this context have limited scope with respect to crucial dispersive effects. Despite great progress over the last decade, driven by the study of quasilinear equations, our knowledge is still very limited. Going beyond this recent activity requires new tools whose development is at the heart of this proposal, including good approximate solutions (parametrices) going over arbitrarily large numbers of caustics, sharp pointwise bounds on Green functions, development of efficient wave packets methods, quantitative refinements of propagation of singularities (with direct applications in control theory), only to name a few important ones.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ANADEL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ANADEL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More