Opendata, web and dolomites

ResisTEST SIGNED

Developing a rapid diagnostic kit for antibiotic resistance

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ResisTEST" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD AUTONOMA DE BARCELONA 

Organization address
address: CALLE CAMPUS UNIVERSITARIO SN CERDANYOLA V
city: CERDANYOLA DEL VALLES
postcode: 8290
website: http://www.uab.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2020-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD AUTONOMA DE BARCELONA ES (CERDANYOLA DEL VALLES) coordinator 150˙000.00

Map

 Project objective

Antimicrobial resistance (AMR) has become a worldwide epidemic, causing more than for 700.000 deaths per year globally, expected to rise to 10 million deaths annually, by 2050. AMR is associated with an increase in morbidity, longer hospitalization time and a marked increase in the associated medical costs. While several attempts are being enforced to reduce the misuse and abuse of antibiotics, we are in dire needs of methods to rationalize the use of antibiotics. Currently, bacterial cultures are the staple diagnostic method of AMR. However, this method presents important drawbacks, such as a long turnaround time, which can be up to two weeks for some bacterial strains, low sensitivity, and the requirement to have, at least to a certain degree, prior information on the putative causative bacteria. All in all, these factors lead to the administration of wide-spectrum antibiotics in the meantime, leading to inefficient treatments, antibiotic changes and AMR occurrences. Hence, it is critical developing novel diagnostic methods offering a faster, high-sensitive alternative to bacterial cultures, the staple in AMR diagnostics. While several systems, such as DNA sequencing, are currently being developed, they require costly equipment and specialized training, limiting its use. In this regard, in ResisTEST we take advantage of our expertise in molecular biology and the knowledge and technology developed in an ERC StG to propose a fast, high-sensitive AMR detection approach that, once further developed into a diagnostic kit, will allow the isolation and real-time monitoring of the expression of different resistance gene without the need of prior knowledge on the pathogen. Therefore, this disruptive approach could represent a significant breakthrough in the fight against AMR, allowing to define, with unprecedented precision, the antibiotic of choice for the treatment of infections where AMR is suspected.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RESISTEST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RESISTEST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More