Explore the words cloud of the TOCINA project. It provides you a very rough idea of what is the project "TOCINA" about.
The following table provides information about the project.
Coordinator |
TECHNISCHE UNIVERSITEIT EINDHOVEN
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 2˙500˙000 € |
EC max contribution | 2˙500˙000 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-ADG |
Funding Scheme | ERC-ADG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-09-01 to 2024-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | TECHNISCHE UNIVERSITEIT EINDHOVEN | NL (EINDHOVEN) | coordinator | 2˙500˙000.00 |
The key challenge in quantum computation is decoherence - the collapse of a quantum state due to local perturbations. In this proposal we address this challenge by developing a new nanomaterials system, which forms the core of a future topological quantum computer. In a topological quantum bit, information is encoded in Majorana modes, which are topologically protected by a local symmetry and therefore have long coherence times. In this project we develop a new state of matter -topological crystalline insulator nanowires- in which the topology is defined by the band inversion and the crystal symmetry of the material. Therefore, these topological states should be exceptionally robust. Further, we integrate strong superconductors on these nanowires. These two features together should increase the energy scales of the system compared to current state-of-the-art devices, and therefore lead to stable and electrically-isolated Majorana states. In this project we develop new crystal growth strategies, which enable to grow out-of-thermodynamic equilibrium structures. We will be the first to employ Molecular Beam Epitaxy (MBE) to precisely tune the SnTe nanowire growth conditions. We use the directionality offered by MBE to shadow-grow superconductors on one nanowire facet. The in-situ ultra-high-vacuum growth of hybrid semiconductor/superconductor devices will result in unprecedented device quality. Due to the increased energy scales, experiments, which have been unattainable so far, come within reach. We use this new materials platform to demonstrate entanglement of two Majorana modes at the ends of a nanowire. This quantum teleportation is a groundbreaking experiment and is the key of a topological quantum computer.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOCINA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "TOCINA" are provided by the European Opendata Portal: CORDIS opendata.
Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read MoreConstraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read More