Opendata, web and dolomites

Synthetic T-rEX SIGNED

A synthetic biology approach for T cell exhaustion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Synthetic T-rEX project word cloud

Explore the words cloud of the Synthetic T-rEX project. It provides you a very rough idea of what is the project "Synthetic T-rEX" about.

activation    tuning    concerted    epigenetic    therapies    profile    benefits    programmed    cd8    provides    tumor    inputs    checkpoint    promoters    microrna    antigen    revert    sequencing    circuits    utr    function    intracellular    dysfunction    natural    biology    clinical    medical    normal    genetically    action    engineering    actuator    receptors    adverse    limited    regulated    immunotherapies    break    self    trigger    rna    rewire    patients    remarkable    solid    contained    notably    reprogram    localised    human    paradigm    restore    immunotherapy    fine    play    ex    exhaustion    physiology    performed    synthetic    strategies    bioengineered    vivo    treatments    signals    broadly    rely    stepwise    hampered    genetic    exhausted    summary    exposure    rex    cells    modulators    industrial    exhibit    revolutionised    shift    engineer    occurring    shown    minimise    intervention    car    scientific    encoded    cell    enhanced    therapy    sensor    chronic    unleash    integration    compute    blockade    therapeutic    output    immune   

Project "Synthetic T-rEX" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙496˙250 €
 EC max contribution 1˙496˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2025-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 1˙496˙250.00

Map

 Project objective

Synthetic Biology has revolutionised approaches for several scientific, industrial and medical applications. These include the development of immunotherapies based on bioengineered cells, most notably engineering of patients T cells with tumor-targeting receptors, the CAR-T cells. Cell-based immunotherapies have shown remarkable clinical success; yet, long-term benefits are hampered by dysfunction of T cells occurring following antigen chronic exposure, a process known as T cell exhaustion. Current treatments of T cell exhaustion are limited and exhibit adverse effects. Synthetic T-rEX aims to reprogram exhausted T-cells using synthetic biology circuits, to implement enhanced and more effective immune cell-based therapies. We will develop specific, self-contained genetic circuits with improved capabilities that minimise the impact on normal cell physiology; by pre-programmed integration of exhaustion-specific intracellular signals, these will rewire T cell activity and restore normal function. Circuits will be developed using a stepwise, bottom-up approach to identify exhaustion-specific inputs by RNA and microRNA-sequencing profile performed on ex vivo exhausted human CD8 T cells. We will then design (a) synthetic promoters and (b) microRNA-regulated 5’UTR that will compute information processing to trigger output activation. Localised therapy will rely on concerted action of genetically encoded immune-checkpoint blockade and fine-tuning of epigenetic modulators that play a major role in T cell exhaustion. Finally, we will engineer T cells with sensor-actuator synthetic devices that revert exhaustion (T-rEX cells). In summary, our proposal provides a paradigm shift in the development of strategies against T cell exhaustion and a solid break-through towards enhanced natural and cell-based immunotherapy. More broadly, the proposed approach will unleash the potential of synthetic biology to the next level of therapeutic intervention.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNTHETIC T-REX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SYNTHETIC T-REX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

QLite (2019)

Quantum Light Enterprise

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More