MODULI

Geometry of moduli spaces and mapping class groups

 Coordinatore RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Germany [DE]
 Totale costo 1˙536˙600 €
 EC contributo 1˙536˙600 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-ADG_20110209
 Funding Scheme ERC-AG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-04-01   -   2017-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN

 Organization address address: REGINA PACIS WEG 3
city: BONN
postcode: 53113

contact info
Titolo: Ms.
Nome: Daniela
Cognome: Hasenpusch
Email: send email
Telefono: 49228737274
Fax: 49228736479

DE (BONN) hostInstitution 1˙536˙600.00
2    RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITAT BONN

 Organization address address: REGINA PACIS WEG 3
city: BONN
postcode: 53113

contact info
Titolo: Prof.
Nome: Ursula Annemarie
Cognome: Hamenstädt
Email: send email
Telefono: +49 228 732914
Fax: -737477

DE (BONN) hostInstitution 1˙536˙600.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

model    groups    geometric    class    group    differentials    subgroups    quasi    mapping    petersson    teichm    dynamical    surface    uuml    ller    quadratic    flow    moduli    weil   

 Obiettivo del progetto (Objective)

'The primary goal of the project is to obtain an understanding of geometric and dynamical properties of moduli spaces and mapping class groups. For a mapping class group of a surface of finite type, we are interested in subgroups, in particular in the trace fields of Veech groups beyond the case of genus 2. Convex cocompact surface subgroups are word hyperbolic surface-by-surface groups, and we aim at clarifying whether or not such groups exist.

Fine asymptotics of the distribution of periodic orbits for the Teichmüller flow on strata of quadratic or abelian differentials can be related to dynamical zeta functions. A Borel conjugacy of the Teichmüller flow on the moduli space of quadratic differentials into the Weil-Petersson flow will be used to analyze dynamical properties of the Weil-Petersson flow.

The handlebody is a finitely presented subgroup of the mapping class group which however is not quasi-isometrically embedded. A new geometric model for the group will be used towards obtaining a comprehensive understanding of the geometry of this group, in particular with respect to calculating the Dehn function and quasi-isometric rigidigy.

A similar geometric model for the outer automorphism group of the free group may yield hyperbolicity of the electrified sphere graph on which this group acts by simplicial automorphisms..'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

FPMICROGLIA (2010)

Towards a dynamic quantitative understanding of neuronal microglial interactions

Read More  

SISI (2008)

Seismic Imaging of the Solar Interior using space-based data

Read More  

BMP4EAC (2014)

Targeting BMP4 and BMPR1a for imaging of esophageal adenocarcinoma

Read More