FLUIDCOMP

A Mathematical and Algorithmic Foundation for Physics Based Compositing of Fluid Animations

 Coordinatore AARHUS UNIVERSITET 

 Organization address address: Nordre Ringgade 1
city: AARHUS C
postcode: 8000

contact info
Titolo: Mr.
Nome: Bjørn
Cognome: Vinding Andersen
Email: send email
Telefono: +45 8715 2071

 Nazionalità Coordinatore Denmark [DK]
 Totale costo 75˙000 €
 EC contributo 75˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 0
 Periodo (anno-mese-giorno) 0000-00-00   -   0000-00-00

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET

 Organization address address: Nordre Ringgade 1
city: AARHUS C
postcode: 8000

contact info
Titolo: Mr.
Nome: Bjørn
Cognome: Vinding Andersen
Email: send email
Telefono: +45 8715 2071

DK (AARHUS C) coordinator 75˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

time    paradigm    basis    mathematical    spatial    graphics    animations    software    models    prototype    animators    years    algorithms    create    computer    industry    compositing    physics    fluid    frequency    animation   

 Obiettivo del progetto (Objective)

'The main objective of the proposed project is to formulate, study and validate a novel physics based paradigm for fluid animation in computer graphics named “physics based compositing”. Our vision is that this paradigm within 2-5 years will impact the animation industry and make feasible the implementation of software tools that will allow animators to create fluid animations of higher quality and at lower costs. In particular the paradigm will allow new animations of fluids (air, water and smoke) to be created efficiently by a high level interaction metaphor based on compositing subsets of existing pre-computed animations. The subsets can be extracted by means of specifications of spatial extent, spatial frequency and time. Unique to our proposal and not considered by previous research are the main ideas of accounting for the correct physics in the composite and formulating the mathematical model as a constrained optimization problem in a wavelet frequency space basis. Our project is comprised of both a theoretical part – the formulation of mathematical models and algorithms – and an experimental part – the prototype software implementation and validation of the theory. Our primary hypothesis is that the outcome of the project – the mathematical models and algorithms – will lead to prototype implementations of physics based fluid compositing that are faster than state-of-the-art non-adaptive fluid simulation algorithms in computer graphics and enable an up to 50% reduction in the time required to create new fluid animations. A major research component will be carried out in Europe as part of a cross-disciplinary international collaboration with world-leading researchers and animators from both academia and industry in New Zealand, Canada and the USA. The project will facilitate transfer of knowledge to Europe and form the basis of collaborations that are expected to endure for many years. As such the proposal is of high relevance to the People Work Programme.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BIOCOR ITN (2009)

Initial training network on biocorrosion

Read More  

PHOTO.COMM (2012)

Design & Engineering of Photosynthetic Communities for Industrial Cultivation

Read More  

DMONICKASEDESIGN (2011)

Safer gene repair and targeting based on the monomeric meganuclease I-DmoI by design of homologous-recombination-inducing nickase activity

Read More