HAPLOID

“Yeast” genetics in mammalian cells to identify fundamental mechanisms of physiology and pathophysiology

 Coordinatore INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Austria [AT]
 Totale costo 2˙499˙951 €
 EC contributo 2˙499˙951 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2013-ADG
 Funding Scheme ERC-AG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-02-01   -   2019-01-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH

 Organization address address: Dr Bohrgasse 3
city: VIENNA
postcode: 1030

contact info
Titolo: Ms.
Nome: Tanja
Cognome: Winkler
Email: send email
Telefono: +43 1 79044 4410

AT (VIENNA) hostInstitution 2˙499˙951.00
2    INSTITUT FUER MOLEKULARE BIOTECHNOLOGIE GMBH

 Organization address address: Dr Bohrgasse 3
city: VIENNA
postcode: 1030

contact info
Titolo: Prof.
Nome: Josef
Cognome: Penninger
Email: send email
Telefono: +43 1 79044 4700
Fax: +43 1 79044 4700

AT (VIENNA) hostInstitution 2˙499˙951.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mammalian    basic    rapid    copy    uncover    genetics    mutational    genetic    disease    haploid    recessive    organisms    yeast    physiology    types    biology    genes    chromosomes    reverse    carry    embryonic    screens    stem    genome    cells    cell    single   

 Obiettivo del progetto (Objective)

'Some organisms such as yeast or social insects are haploid, i.e. they carry a single set of chromosomes. Organisms with a single copy of their genome provide a basis for genetic analyses where any recessive mutation of essential genes will show a clear phenotype due to the absence of a second gene copy. Recessive genetic screens have markedly contributed to our understanding of normal development, basic physiology, and disease. However, all somatic mammalian cells carry two copies of chromosomes (diploidy) that obscure mutational screens. Although deemed impossible, we were able to develop generate mammalian haploid embryonic stem cells, thereby breaking a paradigm of biology.

Our novel stem opens the possibility of combining the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale. The following projects are proposed:

1. Towards“yeast” genetics in mammalian stem cells. Development of optimized technologies for rapid, genome-wide screens via repairable mutagenesis. Mutational bar-coding to introduce quantitative genomics to mammalian biology. 2. Forward genetic screens to uncover essential stem cell genes, identify novel stemness factors, develop improved systems for iPS cell derivation, and to perform synthetic lethal screens for anti-cancer drugs. 3. Reverse genetics using to identify and validate genes involved in cardiovascular physiology, brown and white fat cell development, and pain sensing. 4. Hit validation – exemplified by resistance to the bioweapon ricin.

Haploid embryonic stem cells carry the promise to revolutionize functional genetics and allow rapid, near whole genome-wide mutational forward genetics analysis and reverse genetics in defined cell types. Our systems will be made available to all researchers and the knowledge gained from our studies should fundamentally impact on the basic understanding of physiology and disease pathogenesis.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

BTVI (2014)

First Biodegradable Biocatalytic VascularTherapeutic Implants

Read More  

DYNAMIT (2010)

Deep Tissue Optoacoustic Imaging for Tracking of Dynamic Molecular and Functional Events

Read More  

NETWORKORIGINS (2009)

"A biological network approach to the study of biochemical origins, early cellular evolution, and gene distributions across genomes"

Read More