Coordinatore | UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Italy [IT] |
Totale costo | 2˙491˙200 € |
EC contributo | 2˙491˙200 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2013-ADG |
Funding Scheme | ERC-AG |
Anno di inizio | 2014 |
Periodo (anno-mese-giorno) | 2014-02-01 - 2019-01-31 |
# | ||||
---|---|---|---|---|
1 |
UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Organization address
address: Piazzale Aldo Moro 5 contact info |
IT (ROMA) | hostInstitution | 2˙491˙200.00 |
2 |
UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA
Organization address
address: Piazzale Aldo Moro 5 contact info |
IT (ROMA) | hostInstitution | 2˙491˙200.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'Cavitation is the formation of vapor cavities inside a liquid due to low pressure. Cavitation is an ubiquitous and destructive phenomenon common to most engineering applications that deal with flowing water. At the same time, the extreme conditions realized in cavitation are increasingly exploited in medicine, chemistry, and biology. What makes cavitation unpredictable is its multiscale nature: nucleation of vapor bubbles heavily depends on micro- and nanoscale details; mesoscale phenomena, as bubble collapse, determine relevant macroscopic effects, e.g., cavitation damage. In addition, macroscopic flow conditions, such as turbulence, have a major impact on it.
The objective of the BIC project is to develop the lacking multiscale description of cavitation, by proposing new integrated numerical methods capable to perform quantitative predictions. The detailed and physically sound understanding of the multifaceted phenomena involved in cavitation (nucleation, bubble growth, transport, and collapse in turbulent flows) fostered by BIC project will result in new methods for designing fluid machinery, but also therapies in ultrasound medicine and chemical reactors. The BIC project builds upon the exceptionally broad experience of the PI and of his research group in numerical simulations of flows at different scales that include advanced atomistic simulations of nanoscale wetting phenomena, mesoscale models for multiphase flows, and particle-laden turbulent flows. The envisaged numerical methodologies (free-energy atomistic simulations, phase-field models, and Direct Numerical Simulation of bubble-laden flows) will be supported by targeted experimental activities, designed to validate models and characterize realistic conditions.'
Walking the tightrope between life and death: Oxygen homeostasis regulation in the nematode Caenorhabditis elegans
Read MoreUnderstanding and exploiting complex glycan metabolism in the human microbiota
Read MoreQuantum-coherent drive of energy transfer along helical structures by polarized light
Read More