CANCER KINOME

Systems Biology of Cancer Kinome

 Coordinatore EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH 

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Rudolf
Cognome: Aebersold
Email: send email
Telefono: +41 44 633 3170
Fax: +41 44 633 1051

 Nazionalità Coordinatore Switzerland [CH]
 Totale costo 0 €
 EC contributo 191˙431 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-IEF-2008
 Funding Scheme MC-IEF
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-10-01   -   2011-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZURICH

 Organization address address: Raemistrasse 101
city: ZUERICH
postcode: 8092

contact info
Titolo: Prof.
Nome: Rudolf
Cognome: Aebersold
Email: send email
Telefono: +41 44 633 3170
Fax: +41 44 633 1051

CH (ZUERICH) coordinator 191˙431.30

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

critical    events    signaling    responses    model    kinases    molecular    cancer    biology    pathways    cellular    quantitative    activated    kinase    cell   

 Obiettivo del progetto (Objective)

'Protein kinases mediate most of the signal transduction events in cells by phosphorylation of specific substrates – modifying their activity, cellular location, and/or association with other proteins. The extremely critical role of kinases for critical cellular decisions came evident when an unexpectedly large number of kinases (120/518) were found to be mutationally activated activated or their expression increased due to gene-amplification or translocation in many types of human cancer, suggesting that either a large number of kinase-pathways can contribute to cancer, or that many kinases can regulate the same pathways when activated unphysiologically. These observations point towards a model where cancer can be caused by combinations of multiple different alterations within the cellular systems that control cell and tissue growth, and cancer can thus be clearly described as a complex and multifactorial disease. To date, cancer causing mechanism have been primarily studied using the methods of cell biology, biochemistry and/or genetics, methods which typically reduce complex cellular responses into (often linear) sequences of signaling events. While these efforts have accumulated enormous amounts of detailed information, the heterogeneity of the experimental approaches makes integration of this information into a comprehensive quantitative model a daunting if not impossible task. The critical information about the connectivity of concurrently active signaling pathways, their dynamics and the emergence of physiological responses from molecular events has remained elusive. The main goal of this proposed project is to use systems biology methods to characterize and decipher the cancer linked kinase signalling networks at a molecular and quantitative level to provide the basis for predictive mathematical models for cancer onset. This knowledge of wiring diagram of cancer related kinases will be fundamental in developing therapeutic strategies for cancer.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ALKENESTOAMINOACIDS (2011)

Organic synthesis for chemical biology: enantioselective synthesis of α-amino acids from terminal alkenes using gold catalysis and investigation into the selective functionalisation of proteins

Read More  

INTRA PATH (2009)

Molecular Characterisation of the INTRAcellular Plant Aquaporin Trafficking and Hetero-oligomerisation

Read More  

HESC DIFFERENTIATION (2010)

Generation of Striatal Neurons from Mouse and Human Embryonic Stem Cells: its Relevance for Regenerative Medicine in Huntington's Disease and for Studying Striatal Development

Read More