STRING

Properties and Applications of the Gauge/Gravity Correspondence

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙475˙000 €
 EC contributo 1˙475˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-01-01   -   2015-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) hostInstitution 1˙475˙000.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Prof.
Nome: Michael
Cognome: Green
Email: send email
Telefono: +44 1223-330884

UK (CAMBRIDGE) hostInstitution 1˙475˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

equivalence    yang    theory    mills    heavy    manner    crucial    exact    connections    gauge    correspondence    structure    coupled    gravitational    gravity    string    quantum   

 Obiettivo del progetto (Objective)

'This proposal is concerned with developing and exploiting the remarkable connections between many relativistic and nonrelativistic matter systems on the one hand, and gravitating systems on the other. These connections are implied by the correspondence between gauge quantum field theory and quantum gravity (the gauge/gravity correspondence ) that is a characteristic feature of string theory, which unifies gravity and Yang-Mills gauge theory in a fundamental manner. There are several interrelated objectives: (1) Strongly coupled non-gravitational systems. The aim is to make use of the gauge/gravity equivalence to further our understanding of particularly interesting matter systems that are intrinsically strongly coupled and for which there are therefore few other calculational tools available. Systems of this type include high energy collisions of heavy ions, systems exhibiting quantum criticality, such as high temperature and heavy fermion superconductors, and quarks confined within hadrons by the strong force. (2) Strongly coupled gravitational systems. The aim here is to make use of the gauge/gravity equivalence to deduce properties of gravitational systems at high curvature, starting from weakly coupled gauge theory. The aim is to study: (a) cosmological singularities and the evolution of the early universe in the big-bang era; {b) quantum properties of black holes. (3) Developing the structure of the gauge/gravity correspondence. The projects outlined above rely on further developing the geometrical structure of string theory. The proposal focuses on two crucial aspects: (a) The exact integrability of string theory in anti de Sitter space and the corresponding Yang-Mills gauge quantum field theory, which leads to powerful exact results. (b) The detailed manner in which string theory extends Einstein's general theory of relativity at ultrashort distances, which is crucial for realizing non-perturbative symmetries.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

PBM - FIMBSE (2008)

Partial Behaviour Modelling: A Foundation for Incremental and Iterative Model-Based Software Engineering

Read More  

ARISTOTLE (2014)

Aristotle in the Italian Vernacular: Rethinking Renaissance and Early-Modern Intellectual History (c. 1400–c. 1650)

Read More  

CRASH (2011)

CRyptographic Algorithms and Secure Hardware

Read More