THE DIABETIC BRAIN

The Diabetic Brain

 Coordinatore ROYAL COLLEGE OF SURGEONS IN IRELAND 

 Organization address address: Saint Stephen's Green 123
city: DUBLIN
postcode: 2

contact info
Titolo: Prof.
Nome: Jochen
Cognome: Prehn
Email: send email
Telefono: +353 14022261

 Nazionalità Coordinatore Ireland [IE]
 Totale costo 246˙940 €
 EC contributo 246˙940 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-10-01   -   2012-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    ROYAL COLLEGE OF SURGEONS IN IRELAND

 Organization address address: Saint Stephen's Green 123
city: DUBLIN
postcode: 2

contact info
Titolo: Prof.
Nome: Jochen
Cognome: Prehn
Email: send email
Telefono: +353 14022261

IE (DUBLIN) coordinator 246˙940.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

body    disease    origins    cell    insulin    sensing    chronic    resistance    imbalance    obesity    energy    mechanisms    hypothalamus    diabetes    metabolic    nutrient    diseases    neurones   

 Obiettivo del progetto (Objective)

'Type 2 diabetes is one of the most common chronic diseases in the world, and the number of those affected has been raising dramatically in recent years. In type 2 diabetes the body fails to use insulin effectively, which leads to the chronic increase in blood glucose that characterises the disease. It is not known why the body becomes resistant to insulin but evidence suggests that an imbalance between energy intake, storage, and expenditure can lead to obesity and insulin resistance. Thus, to understand the origins of diabetes it is fundamental to understand how the organism evaluates and controls its metabolic requirements. The hypothalamus in the base of the brain is essential for orchestrating such functions, aided by specific cell groups which detect changes in extracellular levels of nutrients. I suggest that a disruption in these sensing mechanisms in the hypothalamus can lead to a metabolic imbalance in the body. In this project I will study the properties of hypothalamic nutrient-sensing neurones in a model of obesity and insulin resistance. A novel approach that will combine state-of-the-art cell physiology, biochemistry, cellular and mitochondrial bioenergetics, and molecular imaging methods in a multidisciplinary environment will be key to unravel some of the mechanisms used by nutrient-sensing neurones in health and disease. This project will thus provide a better understanding of the role of these mechanisms in obesity, insulin resistance, and diabetes. That knowledge will potentially open new avenues to the development of novel strategies for treating metabolic diseases.'

Introduzione (Teaser)

To gain insight into the origins of diabetes, it is essential to understand how the body senses its metabolic status and sustains energy homeostasis.

Altri progetti dello stesso programma (FP7-PEOPLE)

ADVASCULATURE (2015)

Clot formation as a potential diagnostic tool and therapeutic target for Alzheimer's disease

Read More  

TRANSARREST (2014)

Translational Regulation of Gene Expression by the Nascent Polypeptide Chain

Read More  

ABC (2012)

Adaptive Brain Computations

Read More