HEMODYNAMICS IN CHD

mechanical regulation of congenital heart defects

 Coordinatore T.C DOGUS UNIVERSITESI 

 Organization address address: ACIBADEM ZEAMAT SOKAK 21
city: ISTANBUL
postcode: 34722

contact info
Titolo: Prof.
Nome: Ahmet
Cognome: Ceranoglu
Email: send email
Telefono: +90 216 5445555
Fax: +90 216 3279631

 Nazionalità Coordinatore Turkey [TR]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-IRG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    T.C DOGUS UNIVERSITESI

 Organization address address: ACIBADEM ZEAMAT SOKAK 21
city: ISTANBUL
postcode: 34722

contact info
Titolo: Prof.
Nome: Ahmet
Cognome: Ceranoglu
Email: send email
Telefono: +90 216 5445555
Fax: +90 216 3279631

TR (ISTANBUL) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

rescue    birth    applicant    hearts    he    restoring    heart    disease    chd    altered    techniques    forces    animal    fetal    cardiac    avian    inside    flow    defects    related    blood    severe   

 Obiettivo del progetto (Objective)

'Congenital Heart Defects (CHD) are defects in the heart at birth affecting 1% of the population. Majority of CHD do not have genetic origins suggesting that abnormal forces inside the developing heart due to altered blood flow is a major source. Recent evidence via ultrasonography on suspected fetal hearts with cardiac defects has documented the worsening effects of cardiac malformations over gestation. This has motivated the development of in utero interventions for CHD where the potential exists for restoring blood flow inside fetal heart, which would lead to rescuing altered morphogenesis before birth. Progress to date has been limited because of the inadequacy of embryonic animal studies investigating how disease is progressing under altered blood flow and how defects are rescued under restored blood flow. Avian embryos are ideal to study CHD because of the resemblance between human and avian hearts. The applicant has recently generated techniques for visualizing blood flow inside chicken embryo hearts and computationally simulating this flow to quantify blood flow related forces inside these hearts. In this proposal he will be applying these techniques for a well established animal model for a severe CHD, hypoplastic left heart syndrome, to dissect the contribution of blood flow related forces on this disease. He will also evaluate the rescue potential of restoring blood flow for this disease. The results will highlight hemodynamics environment in the heart for progression and potentially rescue for a severe CHD. The techniques will also provide a rationalistic methodology for researchers studying heart disease. This will be the first study on the cardiovascular developmental bioengineering field in the associated country (Turkey). Technical guidance from applicant’s previous mentors in USA will enable timely adaptation of new developments in the field. Collaborations with other groups working in this field in Europe will contribute to European excellence'

Altri progetti dello stesso programma (FP7-PEOPLE)

CO-EXIN (2011)

Technological and design aspects of extrusion and injection moulding of thermoplastic polymer composites and nanocomposites

Read More  

SELECTIONFORWELFARE (2011)

The potential of behavioral play markers to improve welfare in farm animals through selection

Read More  

CAFFORCE (2014)

Physical forces driving fibroblast-led cancer cell migration

Read More