ANSWER

“Adaptation to cyanobacteria through the symbiotic microbiota in the waterflea Daphnia”

 Coordinatore KATHOLIEKE UNIVERSITEIT LEUVEN 

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Dr.
Nome: Stijn
Cognome: Delauré
Email: send email
Telefono: +32 16 320 944
Fax: +32 16 324 198

 Nazionalità Coordinatore Belgium [BE]
 Totale costo 177˙000 €
 EC contributo 177˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-01-01   -   2015-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN

 Organization address address: Oude Markt 13
city: LEUVEN
postcode: 3000

contact info
Titolo: Dr.
Nome: Stijn
Cognome: Delauré
Email: send email
Telefono: +32 16 320 944
Fax: +32 16 324 198

BE (LEUVEN) coordinator 177˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

human    environmental    microbial    smc    smcs    stress    host    daphnia    symbiotic    cyanobacteria    genes   

 Obiettivo del progetto (Objective)

'Metazoans are ubiquitously associated with microbial symbionts, which can provide direct benefits to their hosts, such as nutrients provisioning, protection against environmental stress, or enhancement of host digestive abilities. These microbial mutualists have the ability to adapt rapidly to changing environments, and could potentially play a key role in the local adaptation of their host, especially in the context of rapid environmental changes imposed by human activities. However, despite their potential key role, symbiotic interactions are rarely considered in the study of adaptation. Here, I propose to adopt such innovative approach, using the water flea Daphnia and its microbiota as a model system. This cosmopolitan freshwater crustacean zooplankter has to deal with anthropogenic induced aquatic habitats changes, more particularly with eutrophication and the associated proliferation of cyanobacteria that produce toxic substances. My aim is to elucidate to what extent symbiotic microbial communities (SMCs) are involved in Daphnia adaptation to such stress, and more particular which microbial genes are involved, using a candidate gene approach. In addition, I propose to investigate the consequences of modifying SMCs on host stress responses at the molecular level, by determining whether the expression of particular tolerance genes towards cyanobacteria in Daphnia are dependent on the type of SMC they harbor. If successful, this project will provide some insight into the consequences of human activities for the functionality of SMCs, and into the role of SMC for host adaptation, which might have important implications in different fields, ranging from ecology and evolution to ecotoxicology, conservation biology and medicine.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ARABIDOPSIS HYBRIDS (2008)

Analysis of Arabidopsis hybrid incompatibilities

Read More  

CHEMCATSUSDE (2011)

ChemCatSusDe: Chemical Catalysis towards a Sustainable Development: Transformation of Bio-Resources and Atom-Efficient Reactions Catalyzed by Bio-Metals

Read More  

NEURON-ASTRO-NETS (2014)

ASTROCYTE REGULATION OF NEURONAL NETWORK ACTIVITY

Read More