Coordinatore | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie. |
Nazionalità Coordinatore | Switzerland [CH] |
Totale costo | 1˙439˙840 € |
EC contributo | 1˙439˙840 € |
Programma | FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | ERC-2010-StG_20091028 |
Funding Scheme | ERC-SG |
Anno di inizio | 2010 |
Periodo (anno-mese-giorno) | 2010-10-01 - 2015-09-30 |
# | ||||
---|---|---|---|---|
1 |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address
address: BATIMENT CE 3316 STATION 1 contact info |
CH (LAUSANNE) | hostInstitution | 1˙439˙840.00 |
2 |
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Organization address
address: BATIMENT CE 3316 STATION 1 contact info |
CH (LAUSANNE) | hostInstitution | 1˙439˙840.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'In this proposal we aim to address several complex biophysical problems at single molecule level that remained elusive due to the lack of appropriate experimental approach where one could manipulate independently both interacting biomolecules and in the same time measure the strength of their interaction and correlate it with their electronic signature. In particular we are interested in finding out how biopolymer finds, enters and translocates nanopore. Equally intriguing is still unresolved mechanism of phage DNA ejection. We will also investigate how exactly proteins recognize the target binding places on DNA and if the protein DNA recognition is based on the complementarity of their charge patterns. To allow addressing those biophysical problems we will develop novel experimental framework by integrating electrodes to the nanopore based force spectroscopy. The proposed strategy will enable two directions of the research: single molecule manipulation and single molecule detection /sensing equally suitable for investigating complex biophysical problems and molecular recognition assays. By exploiting superior sensing and detection capabilities of our devices, we will investigate following practical applications improved nucleotide detection, selective protein detection and protein charge profiling via nanopore unfolding. Unique combination of optical manipulation and nanofluidics could lead to new methods of bioanalysis, mechanical characterization and discrimination between specific and non-specific DNA protein interactions. This research proposal combines nanofabrication, optics, nano/microfluidics, electronics, computer programming, and biochemistry'
p73 dependence in cancer: from molecular mechanisms to therapeutic targeting
Read MoreSelf-organisation at two length-scales: generation and characterisation of porous materials with chemically and physically modified surfaces
Read More"Foundations for Temporal Retrieval, Exploration and Analytics in Web Archives"
Read More