SOAULTRAMASS

Determination of Elemental Composition of Secondary Organic Aerosols using Ultrahigh Resolution Mass Spectrometry: A Combined Laboratory and Field Investigation

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 180˙103 €
 EC contributo 180˙103 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-08-01   -   2013-07-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) coordinator 180˙103.20

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

particles    resolution    laboratory    performed    experiments    aerosol    elemental    biogenic    atmospheric    aerosols    soa    mass    chemical    auml    chamber    ambient    site    bvocs    smog    respect    secondary    composition    compounds    organic    samples   

 Obiettivo del progetto (Objective)

'Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and give rise to secondary organic aerosols (SOA), which have effects on climate and human health. A considerable lack of knowledge exists concerning the formation of new particle mass from BVOCs and the organic chemical composition of natural aerosols. Laboratory chamber experiments have been performed during several decades in an attempt to mimic atmospheric SOA formation. However, it is not entirely clear how close the aerosol particles generated in laboratory smog chamber experiments resemble atmospheric SOA particles with respect to their chemical composition. The objective of the current proposal includes determination of the elemental composition of secondary organic aerosols (SOAs) from both laboratory and ambient samples using novel ultrahigh resolution mass spectrometry. For reaching this objective, we will examine archived and newly collected aerosol samples from both laboratory experiments (i.e., performed at smog chamber facilities) and field campaigns at forested European sites (i.e., a boreal forest site, Hyytiälä, Finland, and a rural site, Auchencorth, United Kingdom) which exhibit large concentrations of biogenic SOA. Aerosol samples will be extracted in water and then directly analyzed with the ultra-high resolution Orbitrap MS. The elemental composition of detected compounds will be determined using Kendrick mass analysis methods. The influence of different smog chamber operation conditions (e.g., ozonolysis vs. photo-oxidation) on the elemental composition of SOA components will be evaluated. The elemental composition of the complex compound mixtures from SOA samples generated under various laboratory conditions will be compared with field samples using statistical data analysis methods and will enable to determine for the first time which laboratory SOA systems reproduce ambient aerosols most closely with respect to their detailed chemical composition.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BREUDS (2013)

Brazilian-European partnership in Dynamical Systems

Read More  

EELTR (2012)

Efficient and Effective Learning to Rank for Information Retrieval

Read More  

TRADERS (2013)

Training Art and Design Researchers in Participation for Public Space

Read More