Opendata, web and dolomites

NCUscan

Rapid Defect Characterisation by Non-Contact Ultrasonic Scanning

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NCUscan project word cloud

Explore the words cloud of the NCUscan project. It provides you a very rough idea of what is the project "NCUscan" about.

lower    industries    aerospace    operate    adversely    times    starting    oil    effect    ultrasonic    thin    wave    50    waves    safety    analysing    removal    noncontactultrasonic    generation    requirement    line    railway    situ    economical    breaking    energy    techniques    requiring    contact    hazardous    proof    surface    parts    individual    critical    service    characterization    industrially    improvements    capital    adopting    electromagnetic    repairing    detection    ultrasound    substantially    place    cycle    competing    geometry    drawbacks    measuring    combine    demonstrator    extremely    networks    single    components    previously    replacing    coatings    device    lab    visual    gas    crack    laser    destructive    theory    civil    successfully    metals    ndt    ultrasonics    examination    characterizing    acoustic    productivity    fast    scattered    shut    transducers    defects    defect    prior    giving    infrastructure    defective    shown    radiographic    characterising    promise    industry    automotive    202735    tested    removing    formations    environments    grant    regulated   

Project "NCUscan" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF WARWICK 

Organization address
address: Kirby Corner Road - University House
city: COVENTRY
postcode: CV4 8UW
website: www.warwick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙998 €
 EC max contribution 149˙998 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2017-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK UK (COVENTRY) coordinator 147˙279.00
2    THE UNIVERSITY OF NOTTINGHAM UK (NOTTINGHAM) participant 2˙718.00

Map

 Project objective

Surface defect detection and characterization is a safety-critical non-destructive testing (NDT) process for many regulated industries, including railway networks, oil and gas, energy generation, aerospace, automotive, and civil infrastructure. The cost of repairing and replacing defective or old components can be extremely high, both in terms of the costs of the components and the related economical costs of a system shut-down. There are several NDT approaches in common use, but these have a number of operational drawbacks that impact adversely on in-situ examination cycle times, and can lead to the requirement for destructive testing. Through NonContactUltrasonic (Starting Grant, 202735) we have shown the promise of surface-wave ultrasonics for characterizing surface-breaking defects in metals. We have shown that the geometry of the defects has a significant effect on the scattered waves, and developed theory and industrially viable techniques for characterising individual defects. All measurements have used non-contact ultrasonic techniques, giving the potential for a fast and simple measurement system, removing the need for visual testing or removal of parts from service, and which could operate in hazardous environments. The concept has been tested successfully in the lab and a Proof of Concept unit is now needed to combine the processes for analysing various crack formations into a single device. This project will develop a demonstrator unit using electromagnetic acoustic transducers and laser ultrasound – testing and adopting industrially viable detection methods in place of the lab-based system used previously. This will lead to a simple, on-line measuring system for industry, with the potential for productivity improvements of up to 50% over competing radiographic methods, and with substantially lower capital costs, with the potential to measure even in the presence of thin coatings without requiring their removal prior to testing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NCUSCAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NCUSCAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

NEUTRAMENTH (2018)

A redox-neutral process for the cost-efficient and environmentally friendly production of Menthol

Read More  

OSIRIS (2020)

Automatic measurement of speech understanding using EEG

Read More