Opendata, web and dolomites

DISTRACT SIGNED

The Political Economy of Distraction in Digitized Denmark

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DISTRACT project word cloud

Explore the words cloud of the DISTRACT project. It provides you a very rough idea of what is the project "DISTRACT" about.

rarr    acquiring    supervised    psychology    unseen    anthropology    distinguish    finite    combines    qualitative    denmark    scholars    interviews    subject    distractions    politics    off    public    business    learning    combining    combination    dimension    trace    pressing    analysed    models    bridging    managed    regulation    technologies    environments    captured    competition    structured    linked    retained    urgency    ideal    unmet    distract    hypotheses    age    predictive    sociology    solid    alluring    capturing    laymen    deflected    scarce    alternative    scientific    interdisciplinary    natural    deflection    workplace    mental    population    empirically    machine    data    experiments    components    smartphones    communities    social    techniques    investigation    scraping    societal    departs    semi    quantitative    economics    education    layers    national    manipulated    analytically    site    retention    tech    economy    world    ethnographic    country    web    material    digitized    science    homogeneous    tools    discourse    grid    distraction    political    quali    explore    differentiate    human    sequence    collected    databases    resource   

Project "DISTRACT" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 2˙499˙315 €
 EC max contribution 2˙499˙315 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 2˙476˙790.00
2    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) participant 22˙525.00

Map

 Project objective

Bridging anthropology, sociology, economics, psychology, political science, and data science, DISTRACT combines advanced data science tools and established social science analysis to explore a pressing challenge: the ever more alluring distractions of human attention in the age of smartphones and other digitized technologies. DISTRACT departs from five linked hypotheses: 1) The attention is commonly (by scholars and laymen) seen as finite; ⇒ (2) As such, it is a scarce resource that is subject to competition and regulation; ⇒ 3) This is not new but it is acquiring unseen urgency in the current data economy; ⇒ 4) An interdisciplinary social data science approach allows for solid and novel investigation of this unmet scientific and societal need; and ⇒ 5) As the world’s most digitized country (and homogeneous population and state-of-the-art public databases), Denmark is an ideal site to study this political economy of distraction. Combining qualitative and quantitative data from four case studies, DISTRACT thus aims to trace and analyse the mental, social and material techniques by which attention is captured, retained and deflected in digitized Denmark. Analytically, we distinguish between three layers in which attention is managed and manipulated: a “mental”, “social” and “material” dimension. We also differentiate between three components of given attention/distraction sequence: the ‘”capturing”, “retention” and “deflection” phase. Empirically, case-studies shall be carried out of (a) national politics, (b) the tech business, (c) “off-the-grid” alternative communities, and (d) education and workplace environments. Data shall be collected, integrated and analysed via a combination of 1) qualitative methods, including ethnographic fieldwork and semi-structured interviews and discourse analysis; (2) quantitative methods, including natural experiments and predictive models; and (3) quali-quantitative methods including web scraping and supervised machine learning.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISTRACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISTRACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Resonances (2019)

Resonances and Zeta Functions in Smooth Ergodic Theory and Geometry

Read More  

PLAT_ACE (2019)

A new platform technology for the on-demand access to large acenes

Read More  

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More