Opendata, web and dolomites

DISTRACT SIGNED

The Political Economy of Distraction in Digitized Denmark

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DISTRACT project word cloud

Explore the words cloud of the DISTRACT project. It provides you a very rough idea of what is the project "DISTRACT" about.

social    solid    psychology    business    alternative    communities    population    layers    competition    age    technologies    retention    learning    economics    laymen    smartphones    interviews    workplace    distract    denmark    regulation    sociology    resource    deflected    material    tech    managed    manipulated    explore    mental    human    national    digitized    quantitative    subject    departs    components    machine    political    politics    techniques    ethnographic    supervised    distractions    scarce    grid    data    world    discourse    societal    quali    acquiring    empirically    capturing    investigation    scholars    experiments    structured    pressing    economy    rarr    qualitative    sequence    interdisciplinary    urgency    bridging    differentiate    natural    analysed    semi    trace    predictive    web    hypotheses    site    country    captured    combination    environments    public    anthropology    unmet    ideal    dimension    scientific    deflection    models    finite    linked    scraping    tools    alluring    science    distraction    unseen    databases    combines    homogeneous    combining    retained    distinguish    education    off    analytically    collected   

Project "DISTRACT" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 2˙499˙315 €
 EC max contribution 2˙499˙315 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 2˙476˙790.00
2    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) participant 22˙525.00

Map

 Project objective

Bridging anthropology, sociology, economics, psychology, political science, and data science, DISTRACT combines advanced data science tools and established social science analysis to explore a pressing challenge: the ever more alluring distractions of human attention in the age of smartphones and other digitized technologies. DISTRACT departs from five linked hypotheses: 1) The attention is commonly (by scholars and laymen) seen as finite; ⇒ (2) As such, it is a scarce resource that is subject to competition and regulation; ⇒ 3) This is not new but it is acquiring unseen urgency in the current data economy; ⇒ 4) An interdisciplinary social data science approach allows for solid and novel investigation of this unmet scientific and societal need; and ⇒ 5) As the world’s most digitized country (and homogeneous population and state-of-the-art public databases), Denmark is an ideal site to study this political economy of distraction. Combining qualitative and quantitative data from four case studies, DISTRACT thus aims to trace and analyse the mental, social and material techniques by which attention is captured, retained and deflected in digitized Denmark. Analytically, we distinguish between three layers in which attention is managed and manipulated: a “mental”, “social” and “material” dimension. We also differentiate between three components of given attention/distraction sequence: the ‘”capturing”, “retention” and “deflection” phase. Empirically, case-studies shall be carried out of (a) national politics, (b) the tech business, (c) “off-the-grid” alternative communities, and (d) education and workplace environments. Data shall be collected, integrated and analysed via a combination of 1) qualitative methods, including ethnographic fieldwork and semi-structured interviews and discourse analysis; (2) quantitative methods, including natural experiments and predictive models; and (3) quali-quantitative methods including web scraping and supervised machine learning.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISTRACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISTRACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More