Opendata, web and dolomites

DISTRACT SIGNED

The Political Economy of Distraction in Digitized Denmark

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DISTRACT project word cloud

Explore the words cloud of the DISTRACT project. It provides you a very rough idea of what is the project "DISTRACT" about.

explore    alluring    interdisciplinary    predictive    resource    scarce    mental    machine    combining    workplace    quali    rarr    social    experiments    technologies    world    retained    combines    analytically    scholars    subject    anthropology    pressing    deflection    qualitative    distinguish    captured    digitized    politics    web    acquiring    sequence    solid    ethnographic    political    semi    databases    education    structured    bridging    layers    scientific    denmark    psychology    business    unmet    societal    discourse    off    public    natural    finite    material    dimension    collected    learning    sociology    competition    supervised    unseen    homogeneous    communities    interviews    ideal    empirically    hypotheses    site    age    tools    distraction    environments    distractions    economy    capturing    manipulated    economics    alternative    investigation    grid    deflected    smartphones    techniques    trace    scraping    managed    national    combination    country    components    distract    population    science    models    laymen    regulation    analysed    urgency    human    departs    differentiate    linked    data    tech    quantitative    retention   

Project "DISTRACT" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 2˙499˙315 €
 EC max contribution 2˙499˙315 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 2˙476˙790.00
2    DANMARKS TEKNISKE UNIVERSITET DK (KGS LYNGBY) participant 22˙525.00

Map

 Project objective

Bridging anthropology, sociology, economics, psychology, political science, and data science, DISTRACT combines advanced data science tools and established social science analysis to explore a pressing challenge: the ever more alluring distractions of human attention in the age of smartphones and other digitized technologies. DISTRACT departs from five linked hypotheses: 1) The attention is commonly (by scholars and laymen) seen as finite; ⇒ (2) As such, it is a scarce resource that is subject to competition and regulation; ⇒ 3) This is not new but it is acquiring unseen urgency in the current data economy; ⇒ 4) An interdisciplinary social data science approach allows for solid and novel investigation of this unmet scientific and societal need; and ⇒ 5) As the world’s most digitized country (and homogeneous population and state-of-the-art public databases), Denmark is an ideal site to study this political economy of distraction. Combining qualitative and quantitative data from four case studies, DISTRACT thus aims to trace and analyse the mental, social and material techniques by which attention is captured, retained and deflected in digitized Denmark. Analytically, we distinguish between three layers in which attention is managed and manipulated: a “mental”, “social” and “material” dimension. We also differentiate between three components of given attention/distraction sequence: the ‘”capturing”, “retention” and “deflection” phase. Empirically, case-studies shall be carried out of (a) national politics, (b) the tech business, (c) “off-the-grid” alternative communities, and (d) education and workplace environments. Data shall be collected, integrated and analysed via a combination of 1) qualitative methods, including ethnographic fieldwork and semi-structured interviews and discourse analysis; (2) quantitative methods, including natural experiments and predictive models; and (3) quali-quantitative methods including web scraping and supervised machine learning.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DISTRACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DISTRACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

BALANCE (2019)

Mapping Dispersion Spectroscopically in Large Gas-Phase Molecular Ions

Read More  

SLAMseq (2019)

SLAMseq: Temporal resolution in gene expression profiling across multiple platforms

Read More