UCDVERITAS

Indirect Search for Dark Matter Using the VERITAS Telescope Array

 Coordinatore UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN 

 Organization address address: BELFIELD
city: DUBLIN
postcode: 4

contact info
Titolo: Mr.
Nome: Donal
Cognome: Doolan
Email: send email
Telefono: +353 1 716 1656
Fax: +353 1 716 1216

 Nazionalità Coordinatore Ireland [IE]
 Totale costo 191˙359 €
 EC contributo 191˙359 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2015
 Periodo (anno-mese-giorno) 2015-02-09   -   2017-02-08

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN

 Organization address address: BELFIELD
city: DUBLIN
postcode: 4

contact info
Titolo: Mr.
Nome: Donal
Cognome: Doolan
Email: send email
Telefono: +353 1 716 1656
Fax: +353 1 716 1216

IE (DUBLIN) coordinator 191˙359.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

universe    utilize    particle    collider    veritas    rate    combine    annihilation    detection    physics    image    sites    particles    observations    vhe    data    experiments    dark    astrophysics    techniques    rays    gamma    telescopes    ray   

 Obiettivo del progetto (Objective)

'Observations of the motions of stars and galaxies in large-scale structures have revealed that most (>80%) of the matter in the Universe is invisible. The nature of the “dark matter” is one of the outstanding puzzles in modern physics and experiments are underway to detect and characterize it. There are three main experimental approaches: direct detection of dark matter particles arriving from space, generation and detection of dark matter particles in particle accelerators, and indirect detection via observation of the gamma rays produced when dark matter particles decay or self-annihilate. Such gamma rays would travel from sites of dark matter density in the universe, and be observable on Earth with gamma-ray telescopes. My research proposal is to utilize very-high-energy (VHE) gamma-ray observations of candidate astrophysical dark matter sites to measure or constrain the dark matter annihilation rate, and to statistically combine the results with those from collider and other VHE telescope searches. The research will utilize VERITAS, one of the leading VHE gamma-ray observatories currently in operation, and will be conducted under the supervision of Dr. John Quinn at University College Dublin. A key component of the research will be to investigate improved analysis techniques to enhance the gamma-ray selection and background rejection image analysis techniques employed in the analysis of VERITAS data. I developed expertise with these methods during my graduate and post-doctoral work in particle physics, and am thus uniquely positioned to adapt and refine such techniques for use in astrophysics. I will also combine gamma-ray annihilation rate limits with complementary measurements from other telescopes and collider experiments to produce significantly improved constraints on dark matter. This project is highly interdisciplinary, bringing together particle physics and astrophysics with image processing, multivariate data analysis and statistical techniques.'

Altri progetti dello stesso programma (FP7-PEOPLE)

MEDOW (2013)

Multi-terminal DC grid for offshore wind

Read More  

HCV-AKAP (2013)

The role of PKA in the Hepatitis C virus life cycle

Read More  

WHYWOMENRULED (2011)

Why Women Ruled: Explaining the Rise and Persistence of Female Rule in Pre-colonial Southeast Asia and Madagascar

Read More