FUNCTIONARCHITECTURE

Functional implications of the remarkable conservation of eukaryotic gene architecture

 Coordinatore THE HEBREW UNIVERSITY OF JERUSALEM. 

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yehuda
Email: send email
Telefono: 97226586618
Fax: 97226513205

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-RG
 Funding Scheme MC-IRG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-01-01   -   2013-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM.

 Organization address address: GIVAT RAM CAMPUS
city: JERUSALEM
postcode: 91904

contact info
Titolo: Ms.
Nome: Hani
Cognome: Ben Yehuda
Email: send email
Telefono: 97226586618
Fax: 97226513205

IL (JERUSALEM) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

conservation    functions    acid    architecture    gene    bias    undetected    sequences    biological    amino    sequence    structure    functional    functionality    introns    evolutionary   

 Obiettivo del progetto (Objective)

'One of the fundamental principles in comparative genomics is that evolutionary conservation implies functional importance. This principle has been used extensively in the life sciences, as a tool to detect biological functionality. In the vast majority of studies, evolutionary conservation has been sought in three biological “entities”: sequence (actual nucleotide or amino-acid sequences, as well as sequence properties like codon usage bias, GC content, and amino-acid bias); structure (like RNA, DNA and protein secondary and tertiary structures); and genome architecture (like synteny, gene order, relative gene orientation). These strategies have worked very well, but evidence is rapidly accumulating that there is a lot of “function without detectable conservation”. Many factors can potentially contribute to such “undetected functionality”, such as functions that do not depend on sequence or structure (for instance, nonsense mediated decay is affected by the mere location of the introns), functions that depend on very short and redundant sequence motifs, co-evolution of factor and target, and migration of functional sequences along the chromosome. We suggest a novel strategy to identify parts of these “undetected functions”. We study how to quantify the conservation in a fourth type of biological “entity”, that we dub gene architecture, and which is derived from the exon-intron structure of the gene. To this end, we are building a eukaryotic gene architecture database, and developing an algorithm to quantitatively evaluate the level of architectonic conservation in the different regions of the gene. Preliminary analysis reveals that conservation of gene architecture is plentiful, and in many cases it can be detected over very long evolutionary times (more than a billion years). This allows us to identify genic elements, mostly introns and splice junctions, which are likely to be of functional importance.'

Altri progetti dello stesso programma (FP7-PEOPLE)

COMANDER (2013)

Converged Optical-Mobile Access Networks with Dynamic and Efficient Resource allocation

Read More  

VTG-CDG (2008)

Vesicular Golgi trafficking deficiencies in unsolved CDG type II patients

Read More  

CCT-MICROINDUS (2013)

Continuous Catalytic Transformations: from optimization in MICRO systems to INDustrial production

Read More